航天器防护高能带电粒子的新方法

孟立飞,易忠,张超 (北京卫星环境工程研究所,北京 100094)

摘要:文章介绍了航天器防护高能带电粒子的一种新方法——利用磁鞘进行主动防护。阐述了磁鞘防护高 能带电粒子的基本原理,分析了其在工程应用上的可行性,并提出了磁鞘的一种设计方案。针对这种设计方案 进行了数值分析计算,结果表明该方案可以有效防护 0.15 MeV以下的电子。

关键词: 航天器屏蔽; 主动防护; 磁鞘; 高能带电粒子 中图分类号: V520.6; V528 文献标识码: A

1 引言

航天器所处空间存在大量高能带电粒子(电 子、质子等),它们是导致卫星出现故障和异常的 主要原因之一。在未来,星际旅行任务逐渐增加, 有的任务将要持续几年的时间;对于载人航天器来 说,对高能粒子辐射的防护显得尤为重要。需要防 护的高能带电粒子有两种:第一种是太阳耀斑质 子,它发生于太阳耀斑爆发事件;第二种是银河宇· 宙射线,它虽然没有太阳耀斑那样致命,但和是一 个连续的背景辐射,航天器内的所有成员都将放幅 射。对于没有防护的航天器,这两种辐射对于航天 员都将引起严重的健康问题,甚至死亡。

目前国内外对高能带比较子的防护主要是被动 防护,即提高元器件抗辐射的能力以及在元器件表 面覆盖拉辐射盖板 但是抗辐射盖板的厚度需要随 着带电粒子能量的增加而增加,这将大大增加航天 器的质量。同时,有的防护可能使情况变得更糟; 因为辐射粒子可以和防护层相互作用,产生二次带 电粒子,例如产生γ射线、质子等,反而增加总体 辐射剂量,使航天器内部的带电粒子环境更为恶劣。

因此,很多国家开始设计针对带电粒子的主动 防护方法,主要包括电场防护、磁场防护及混合防 护等。电场防护由于耗电功率大等无法解决的问题, 目前还存在很大的困难。根据计算^[1],如果采用电场 防护,要维持 200 MV电压,至少需要 10 GW的功率。 同理,等离子体防护也暂时无法实现。随着近些年 来高温超导产业的不断发展,利用超导线材产 文章编号: 1673-1379(2008)02-019-09 生磁场来防护高能带电粒子成为最简单可行的一种 方式。在本文中把用作主动防护的磁场称为"磁鞘"。

2 国外关于磁场防护的一些研究

美国 NASA 关于航天器利用磁鞘防护带电粒 子的研究开始于 20 世纪 60 年代末期,但是由于超 导构彩"限制(当时只有低温超导材料,即在液氮 温度必成超导),使得航天器轨道上形成超导的条 件非常苛刻,同时由于"阿波罗计划"的中断,使 得该项研究中断。随着高温超导材料研究的发展及 火星探测计划的提出,该研究又重新纳入 NASA 计划。目前 NASA 关于磁鞘的研究主要是针对载 人航天,要求磁鞘对航天员的影响最小,同时能够 最大程度地偏转高能带电粒子。

1993年,美国Duke大学Franklin Cock为NASA 撰写了针对太阳辐射粒子的航天器磁防护最终报 告^[2]。他的磁鞘实现的方式(见图 1)是在航天器 外围环绕超导电流环,半径为2000m,质量达到 2000kg,电流为1200A。这种设计能够使200MeV 的质子在到达航天器表面之前偏转,而超导电流环 对航天员及飞行器的影响小于地磁场的影响。

图 1 NASA 关于超导线圈磁防护的设计 Fig.1 The magnetic shielding design of superconducting coil by NASA

收稿日期: 2007-09-22; 修回日期: 2008-02-24

作者简介:孟立飞(1979-),女,硕士学位,工程师,从事航天器磁环境模拟与效应研究。联系电话:(010)68746675。

第2期

个磁鞘形成的方式。他们主要考虑的是载人航天器 内航天员的防护,需要考虑的粒子是 30 MeV~几百 MeV的质子。他们提出,高能太阳宇宙射线(Solar cosmic rays)是有方向性的,而能量低一些的射线则 更多地显现出各向同性。人们需要关心的是可能对航 天员或仪器造成损害的高能粒子。能量在几个MeV 的粒子大致分布在磁力线方向周围30°的范围内; 而需要防护的粒子能量更大,分布的角度范围更 窄。可以通过监测太阳的活动或者通过在航天器上 安装磁探测器的办法来确定粒子的角度。

因此,只要设计一个装置使之能防护一个方向 上的高能质子就可以了。他们选取了超导材料 NbTi,将其做成柱形,形成一个闭合的回路,即"磁 镜"(magnetic lens)。这样就可以防护大多数的高 能质子,如图2所示。

Fig.2 Deflected trajectories of the protons and the volume

他们还计算了使用超导线圈

和被动防护增重的比较,

	主り	招导线圈主动防拍和 ヘ1 屎蔽体被动防拍撞重的比较	
	12 2	超守线圈王幼奶扩和 AI 开版件被幼奶扩指里的比较	
Table 2	Comparis	on between the directional magnetic lens and an equivalent	Absorbe

Tuble 2 Comparison between the uncertoinal magnetic tens and an equivalent in assorber												
质子动能/ MeV	质子动量/ (MeV·c ⁻¹)	超导线圈					Al屏蔽体					
		最大磁场/	最大电流/	电流密度/	线圈质量/	系统质重/	总质量/	面密度/	厚度/	总质量/		
		Т	mA	$(A \cdot mm^{-2})$	kg 🚽	kg	kg	$(g \cdot cm^{-2})$	cm	kg		
40	277	0.70	0.87	1020	18	50	68	2	0.74	250		
100	441	1.13	1.41	980	30	50	80	10	3.7	1250		
150	551	1.40	1.74	950 🖌	38	50	88	16	5.9	2000		
300	808	2.07	2.57	840	63	63	126	52	19.3	6500		
500	1090	2.80	3.48	700	103	103	206	141	52.2	17625		
1000	1696	4.36	5.41	50	200	200	400	376	139.3	47000		

2004 年 10 月,美国麻省理 的 (MIT)一个研究小组从 NASA 六别一笔 7.5 万美元的基 金,用6个月的时间对航天的磁主动防护做初步 研究。他们把利用超导材料在航天器外产生具有防 护作用的藻层称为"磁泡"(magnetic bubble)。如 果项目、1000,他们还将得到40万美元的资金, 用来做公年以上的研究。

磁鞘防护的原理 3

利用磁场来防护高能带电粒子的灵感并不是 最近才有的,它最初来源于地球磁场对带电粒子的 防护作用。在赤道上,只有动量高于15GeV/c的质 子可以到达地球表面。在高纬度地区,对高能粒子 的防护较弱,但地球磁场仍然可以防护低能粒子 (能量<100 MeV),而这种能量的粒子是太阳最活 跃阶段的主要成分。

在航天器的地球轨道环境中, 内辐射带质子的 能量一般不超过 50 MeV, 通量最大的部分在 4 MeV 以下; 电子的能量一般在 1 MeV以下, 通量最大 的部分在 0.5 MeV以下。在外辐射带,质子的能量一 般不超过100MeV,电子的能量一般不超过0.5MeV。

带电粒子在磁场中会发生偏转,沿螺旋线运 动。回旋半径与磁感应强度成反比,磁场越强,半 径越小。这样一来, 在很强的磁场中, 每个带电粒 子的活动便被约束在一根磁力线附近的很小范围 内。磁鞘用来防护高能带电粒子的原理就是在航天 器表面形成一层强度足够的磁场,使带电粒子在到 达航天器表面之前偏转,或者束缚在磁场中,从而 不会对航天器和人体造成伤害。

磁鞘设计 4

航天器磁鞘的设计要符合3个要求:首先,防 护高能带电粒子需要较大的磁场,磁鞘产生的磁场 必须足够大;其次,受航天器本身重量的限制,磁 鞘不能太重; 第三, 磁鞘产生的磁场不能影响航天 器本身的正常工作。

考虑到上述的3个要求,采用高温超导体来产 生磁场是一个很好的选择。高温超导线材与常规电

/ 增重

缆相比,具有明显的优势:一是损耗低。高温超导 电缆的导体损耗不足常规电缆的 1/10,加上制冷的 能量损耗,其运行总损耗也仅为常规电缆的 50%~ 60%。二是容量大。同样截面的高温超导电缆的电 流输送能力是常规电缆的 3~5 倍。三是节约材料。 具有同样传输能力的高温超导电缆与常规电缆相 比,使用较少的金属和绝缘材料。

高温超导线材输运电流大,可以达到几百A, 这样只需很少的材料就可以产生很大的磁场,大大 节约了重量。目前可以用来形成超导线圈的高温超 导材料主要有两种: Bi系高温超导线材和YBCO带 材。银包套的Bi系多芯带材的超导临界转变温度为 105~110 K,临界工程电流密度可以达到 8 000~ 12 000 A/cm²。目前世界上最大的Bi系超导线材的生 产厂家是美国超导公司(American Superconductor, Co.),其生产能力和产品技术指标都处于领先地位。 而目前新兴的YBCO带材具有高Jc、良好的Jc-B特 性、高的n值(35)等优点,前景十分看好。

图 3 是磁鞘的一种设计方案。在航天器的四周 放置一组环形支架,每个支架通 4 组相同方向的电 流,这样在线圈中间会形成一个较大的磁场/而在 线圈的外部磁场很小。

我们对上述的磁鞘设计方案进行了模拟计算。 假设在每个支架上通4组500A的电流,磁场的计 算结果如图4所示。

图 4 磁鞘的磁场分布 Fig.4 The magnetic field of the designed magnetosheath

从图上可以看出,磁场几乎都被限制在线圈内部,外部磁场很小,最大磁感应强度达到 0.028 3 T。

在磁鞘的对称中心位置,磁感应强度为 0.07× 10⁴ T,远小于地磁场,不会对卫星本体产生影响。 在构成磁鞘的线圈中间,磁感应强度在几十个Gs (1 Gs=1×10⁴ T)左右,可以偏转能量不太高的 带电粒子。图 5 模拟了 0.15 MeV左右的电子在磁 鞘中的偏转情况。

图 5 015MeV 左右的电子在磁端中的编转情况 Fig.5 Deflected trajectories of electrons about 0.15 MeV in the magnetosheath

在图 5 中,电子能量分布在 0.15 MeV上下 10% 的范围内。可以看出,能量越小的电子偏转越大, 某些电浮偏转角度达到 180°。因此,这种设计方 案可认屏蔽 0.15 MeV以下的电子。

讨论

本文讨论了磁鞘的一个初步设计方案,它仍然 存在着很多问题。首先,这个磁鞘(图3)无法屏 蔽竖直方向上的粒子。要解决这个问题,可以在两 端再加上两个小的同类型的磁鞘,或者在两端加被 动防护屏蔽。如果高能带电粒子的单一方向性特点 得到论证,则磁鞘的设计方案将会改变,只需要防 护一个方向上的粒子即可。其次,磁鞘产生的磁场 仍然较小,无法屏蔽能量较高的粒子,特别是质子。 要偏转同等能量的质子需要更大的磁场,这需要进 行更合理的设计,满足更高的要求。最后,磁鞘支 架的开合、重量等问题在这里没有涉及,还待详细 论证。用最小的重量产生最大的磁场,是我们今后 工作的努力方向。

参考文献(References)

- Levy R H, French F W. Plasma radiation shield: concept and applications to space vehicles[J]. J Spacecraft, 1968(5): 570-577
- [2] Cock F H. Magnetic shielding of interplanetary spacecraft against solar flare radiation final report[R]. 1992-1993, NASA-CR-195539
- [3] Spillantini P, et al. Nuclear instruments and methods[J]. Physics Research A, 2000(443): 254-263