

SPACECRAFT ENVIRONMENT ENGINEERING 中文核心期刊 中国科技核心期刊

火箭仪器舱结构模型的热振耦合模拟方法

薛景天 董龙雷 刘振 赵建平 丁镇军 王潇屹

A thermal-vibration coupling simulation method for structural model of a rocket instrument cabin

XUE Jingtian, DONG Longlei, LIU Zhen, ZHAO Jianping, DING Zhenjun, WANG Xiaoyi

在线阅读 View online: https://doi.org/10.12126/see.2023074

您可能感兴趣的其他文章

Articles you may be interested in

真空热试验中红外笼对伞状天线非稳态加热过程数值仿真

Numerical simulation of transient heating process in thermal vacuum test of an umbrella-shaped antenna 航天器环境工程. 2018, 35(4): 348-352 https://doi.org/10.12126/see.2018.04.007

热声振耦合效应对薄壁叶片结构应变影响的试验研究

Experimental study of the effect of thermal-acoustics-vibration coupling on the strain of thin-blade structure 航天器环境工程. 2019, 36(4): 363-368 https://doi.org/10.12126/see.2019.04.011

多自由度微振动环境时域波形复现的数值仿真

Numerical simulation of time domain waveform reproduction of micro-vibration environment of multi-degree of freedom 航天器环境工程. 2017, 34(3): 241-246 https://doi.org/10.12126/see.2017.03.003

磁场压缩波动幅度对卫星磁强计零位标定影响的数值仿真

Numerical simulation of influence of compressional fluctuation amplitude on zero correction of satellite magnetometer 航天器环境工程. 2019, 36(3): 229–234 https://doi.org/10.12126/see.2019.03.005

泵压式发动机瞬态热试验方法

Method for transient thermal test of turbopump-fed rocket engine 航天器环境工程. 2020, 37(1): 89-94 https://doi.org/10.12126/see.2020.01.014

基于局域均值分解的冲击响应谱时域波形合成新方法

A new method for time domain waveform synthesis of shock response spectrum based on local mean decomposition 航天器环境工程. 2018, 35(2): 135–140 https://doi.org/10.12126/see.2018.02.006

43

https://www.seejournal.cn

E-mail: htqhjgc@126.com

Tel: (010)68116407, 68116408, 68116544

火箭仪器舱结构模型的热振耦合模拟方法

薛景天¹,董龙雷^{1*},刘振¹,赵建平¹,丁镇军²,王潇屹³

(1. 西安交通大学 复杂服役环境重大装备结构强度与寿命全国重点实验室, 西安 710049;2. 北京强度环境研究所, 北京 100076; 3. 火箭军某部, 西安 710407)

摘要:传统的热振耦合方法缺乏对材料热特性变化的考虑,影响仿真分析的精度。为此,文章提出 一种热特性参数与振动动态耦合的分析方法,建立动态变化的热振耦合方程,基于闪光瞬态法得到材料 的热特性参数并将其应用在结构传热过程的数值仿真计算中。结果表明,是否考虑材料的热特性变化会 对结构的传热过程仿真结果产生较大影响,并进一步影响结构的刚度特性仿真结果,从而造成结构模态 分析偏差。采用本研究提出的动态变化的热振耦合模拟方法可提高传热仿真分析的精度和可靠度。

关键词:火箭仪器舱;热振耦合;数值仿真;闪光瞬态法;刚度变化 中图分类号:V412.4;TB115.2 文献标志码:A 文章编号:1673-1379(2024)01-0043-06 DOI:10.12126/see.2023074

A thermal-vibration coupling simulation method for structural model of a rocket instrument cabin

XUE Jingtian¹, DONG Longlei^{1*}, LIU Zhen¹, ZHAO Jianping¹, DING Zhenjun², WANG Xiaoyi³ (1. State Key Laboratory for Strength and Vibration of Mechanical Stuctures, Xi'an Jiaotong University, Xi'an 710049, China; 2. Beijing Institute of Structure and Environment Engineering, Beijing 100076, China;

3. A Department of the PLA Rocket Force, Xi'an 710407, China)

Abstract: The conventional thermal-vibration coupling method lacks the consideration for the changes in the thermal characteristics of materials, which affects the accuracy of simulation analysis. Therefore, in this paper, an analysis method by dynamic coupling of thermal characteristics and vibration was proposed, and a dynamic thermal-vibration coupling equation was established. Based on the flash transient method, the thermal characteristic parameters of materials were obtained and applied in the numerical simulation of structural heat transfer process. The results show that whether or not the variation of heat transfer characteristics of materials is considered exhibits a great impact on the heat transfer process simulation results of the structure, which will further affect the simulation results of the stiffness characteristics of the structure, resulting in errors in structural modal analysis. The accuracy and reliability of heat transfer simulation analysis can be improved by the proposed dynamic thermal-vibration coupling simulation method.

Keywords: rocket instrument cabin; thermal-vibration coupling; numerical simulation; flash transient method; stiffness change

收稿日期: 2023-05-19; 修回日期: 2024-01-26 基金项目: 基础研究项目群(编号: xxxx10110-206)

引用格式: 薛景天, 董龙雷, 刘振, 等. 火箭仪器舱结构模型的热振耦合模拟方法[J]. 航天器环境工程, 2024, 41(1): 43-48 XUE J T, DONG L L, LIU Z, et al. A thermal-vibration coupling simulation method for structural model of a rocket instrument cabin[J]. Spacecraft Environment Engineering, 2024, 41(1): 43-48

0 引言

在火箭飞行过程中,其机体结构表面与高速气 流摩擦会产生气动加热现象。气动加热环境对火箭 的影响主要体现在两方面:一是可能改变火箭结构 本身的动力学特性;二是向内传热使结构内部的仪 器或元器件升温甚至受损失效,从而影响火箭的可 靠性。目前,针对火箭本体结构的气动加热防护已 有相对成熟有效的措施^[1]。而热环境对航天器结构 的动力学特性影响主要体现在对结构固有频率的 影响, Heeg 等^[2] 对典型的航天飞机真实飞行状态 进行研究并发现,航天飞机表面温度可以从常温升 至 2700 ℃ 以上, 相应地, 结构固有频率及阻尼也 可剧烈变化高达30%以上。工程中常利用数值仿 真与试验相结合的方法对结构进行热振分析^[3-10], 但在有关研究中普遍存在的问题是:进行传热分析 时将结构材料的热特性参数视为常量,但实际上材 料的热特性参数(如热导率和比热容)在传热过程 中并非恒定不变,而是会随温度的变化发生改变; 即使考虑到此影响而将这些材料参数设为变量,依 然无法保证真实反映材料参数的变化,导致热振耦 合特性预示出现偏差。

本文提出一种材料热特性参数与振动动态耦 合的分析方法,在进行结构传热分析中考虑材料热 特性随温度的变化,同时结合振动方程,对某火箭 仪器舱气动过程进行热振耦合机理分析。

1 热振耦合机理分析

在火箭的飞行过程中,针对热环境对火箭结构 的影响:一方面要关注固有频率对结构动力学特性 的影响;另一方面要关注结构传热过程,从而对结 构内部元器件和部件的温度变化做出预示。常规的 结构动力学分析是从振动方程出发^[7]。然而,本文 所讨论的是结构的固有特性,与外力无关,并且为 简化模型而忽略结构自身的阻尼项,因此振动方程 中的阻尼和激励项为0,对结构的模态分析可以围 绕公式

$$M\{X''\} + K\{X\} = \{0\}$$
(1)

展开,其中:**K**为结构的总刚度矩阵;**M**为结构的质量矩阵。

加入温度场变化的主要影响体现在改变振动

方程中的刚度项:一方面,温度的改变使材料的弹 性模量发生改变,进而影响结构的刚度,即

$$\boldsymbol{K}_{\mathrm{T}} = \int_{\Omega} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{D}_{\mathrm{T}} \boldsymbol{B} \mathrm{d}\Omega, \qquad (2)$$

式中: **B** 为几何矩阵; **D**_T 为与材料弹性模量 E_T 和 泊松比 µ 有关的弹性矩阵。

另外一方面,当结构的温度变化时会产生热应 力并影响结构的刚度,即

$$\boldsymbol{K}_{\sigma} = \int_{\Omega} \boldsymbol{G}^{\mathrm{T}} \boldsymbol{\Gamma} \boldsymbol{G} \mathrm{d} \boldsymbol{\Omega}, \qquad (3)$$

式中:G为形函数矩阵; **Г**为结构热应力矩阵。

在实际试验过程中,温度场和应力场是同时存 在的,故通过模态叠加后结构的刚度可以表示为

$$\boldsymbol{K} = \boldsymbol{K}_{\mathrm{T}} + \boldsymbol{K}_{\sigma} \tag{4}$$

或

$$\mathbf{K} = g(E_{\mathrm{T}}, B, \mu, T) \,. \tag{5}$$

对于某确定结构而言,其泊松比 μ 是不变的, 而弹性模量 *E*_T 以及结构热应力 *Γ* 均随着结构温度 *T* 的变化而发生改变,因此掌握结构温度的变化规 律是研究热振耦合机理的关键。

在飞行过程中,飞行器结构表面与气体摩擦产 生的热量是通过热传导的方式传递到结构内部的。 热传导方程是典型的抛物线型二阶偏微分方程(见 式 (6)),

$$\frac{\partial T}{\partial \tau} = \frac{\lambda}{\rho c_p} \left(\frac{\partial^2 T}{\partial \lambda^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right),\tag{6}$$

式中:λ为材料的热导率;ρ为材料的密度;c_p为材料的比热容。式(6)为笛卡儿坐标下的非稳态导热 方程,反映的是三维非稳态热传导的传热情况。由 式(6)可推导出

$$T = f(x, y, z, \tau), \qquad (7)$$

式中:T为结构某点的温度;x,y,z为该点的坐标位 置;r为传热时间。式(7)揭示了温度与位置和传热 时间的关系,可以得到某一时刻结构的热分布以及 在传热过程中结构某点的温度变化。

温度 T 与弹性模量 E_T 间存在映射关系,而材料的热特性参数(如热导率λ和比热容 c_p)会随温度的变化而发生改变。根据温度-弹性模量以及温度-热特性参数这2组对应关系,可以建立材料的弹性模量和热特性参数之间的对应关系,

$$E_{\rm T} = h(\lambda, \rho, c_p)_{\circ} \tag{8}$$

综上, 热振耦合机理的研究是从热环境对结构 的刚度影响出发, 关注影响结构刚度参数中随温度 的变化而发生改变的量, 从而对热环境下结构的振 动特性做出预示。因此, 考虑热特性参数变化的仿 真计算更加真实、可靠性更高。

2 闪光瞬态法测量材料热特性

为在热振耦合分析中引入材料热特性的变化, 需要得到材料热特性与温度之间的对应关系。目前,主要利用稳态法和瞬态法测量材料的热导率^[11]。 稳态法根据 Fourie 方程直接测量热导率,但该方法 适用的温度和热导率范围均较窄,主要是在中等温 度下测量中低热导率材料。瞬态法则应用范围较为 宽广,尤其适合于高热导率材料在高温下的测试。 闪光瞬态法测量原理见图 1^[12]。

Fig. 1 Measurement principle schematic of flash transient method^[12]

如图 1 所示,通过仪器向待测试样底部发出激 光束,由试样上方的红外检测器跟踪监测试样的升 温过程,得到电信号与升温时间的关系曲线,通过 转化得到试样材料热扩散系数与升温时间的关系 曲线。

$$\alpha = 0.138\ 88 \times d^2 / t_0, \tag{9}$$

式中: α 为试样材料的热扩散系数;d为试样厚度; t_0 为半升温时间,即试样温度达到设定温度一半所 用的时间。

得到材料热扩散系数后,根据热扩散系数与热导率及比热容的关系,利用已知材料参数的标样共同进行测试,可推导得到待测试样材料的热导率及比热容。具体方法为:使用一个与待测试样截面形状相同、厚度相近、热物性相近、表面光滑程度相同且比热容值已知的参比标样,与待测试样同时进行表面涂覆;在理想的绝热条件下,依次进行测量得到2条测试曲线。由于2试样加热时间相同,因此吸收的热量可以认为是相同的,故可通过公式(10)得到待测试样的比热容。

$$c_{p_1}/c_{p_2} = (Q_1/\Delta t \cdot m_1)/(Q_2/\Delta t \cdot m_2),$$
 (10)

式中: c_{p_1} 和 c_{p_2} 分别为待测试样和参比标样的比热 容: Q_1 和 Q_2 分别为待测试样和参比标样所吸收的 热量,在此认为 $Q_1=Q_2$: Δt 为升温时间: m_1 和 m_2 分 别为待测试样和参比标样的质量。

然后,可根据

$$\lambda = \alpha \cdot c_p \cdot \rho \tag{11}$$

计算出材料的热导率 λ。

3 数值分析

热振耦合机理的研究通常包括以下步骤:1)设 计模型并进行数值分析;2)设计试验装置及夹具, 并制定试验条件;3)完成热振试验;4)对试验结果 进行数据处理,包括材料的热振耦合特性预示。本 文详述开展模型设计并进行数值分析的过程,其余 步骤会在之后的文章中进行论述。

3.1 试验模型设计

以某型号火箭仪器舱为研究对象,建立其几何 模型,如图2所示。

图 2 火箭仪器舱筒形舱段三维模型 Fig. 2 Three-dimensional model of the rocket cylindrical instrument cabin

筒形舱段由筒与十字梁2部分结构组成,其中 十字梁用来安装火箭内部部件及其他元器件。对该 模型进行数值仿真计算,筒的材料为钢,通过闪光 瞬态法测得的结构材料参数如表1所示。

表 1 火箭仪器舱筒形舱段的材料参数

 Table 1
 Material parameters of the rocket cylindrical instrument cabin

		-	
温度/	弹性模量/	热导率/	比热容/
°C	GPa	$(W \cdot m^{-1} \cdot K^{-1})$	$(J \cdot kg^{-1} \cdot C^{-1})$
20	206	52.34	472
100	203	48.85	480
200	182	44.19	498
300	153	41.87	524
400	141	34.89	560

注:材料的泊松比为0.3,密度为7900 kg/m3

3.2 数值计算

3.2.1 传热计算

本文对筒形舱段模型的处理作出以下假设:

1) 简外侧受到均匀温度场的影响,即结构纵向 不存在温度梯度,可简化为二维平面;

2)筒的厚度远小于舱段的长度,即可忽略筒的 厚度,将舱段简化为薄壁壳结构;

3) 舱段结构为对称结构,在传热过程中十字梁 结构的温度分布具有对称性,可简化为矩形平板。

经上述简化的简形舱段传热模型如图 3 所示, 传热过程被简化为第一类边界条件的一维热传导 问题:给定模型外侧固定温度值,分析中间矩形结 构部分的温度与传热时间的关系,得到

$$T = f(x,\tau), \qquad (12)$$

式中:*T*为结构某点的温度;*x*为该点的坐标位置; *r*为传热时间。

图 3 简形舱段简化传热模型

Fig. 3 Simplified heat transfer model of the cylindrical cabin

在实际传热过程中, 简外侧边界条件为恒温 400 ℃, 结构其他部分的初始温度为 20 ℃, 即传热 的边界条件为

$$\begin{cases} \frac{\partial u}{\partial \tau} = \alpha \frac{\partial^2 u}{\partial x^2} \\ u(x,0) = 20 \\ u(0,\tau) = 400 \\ u(l,\tau) = 400 \end{cases}$$
(13)

式中 u(x, t) 为与位置和时间相关的传热方程, l 为 筒纵向长度。

采用分离变量法求解该传热模型的偏微分方 程得到

$$\begin{cases} u(x,\tau) = \sum_{n=1}^{\infty} \alpha_n \sin\left(\frac{n\pi x}{1}\right) e^{-\frac{(n\pi)^2 \alpha \tau}{l^2}} \\ \alpha_n = \frac{760}{n\pi} \left[\cos(n\pi) - 1\right] \end{cases}, \quad (14)$$

通过式 (14) 可以得到模型上各点的温度变化, 即结构上任意位置、任意时刻的温度值。

在热振耦合试验中,通常使用石英灯阵对试件 进行温度加载来模拟飞行器在飞行过程中所受到的 气动加热。因此需要对所使用的石英灯的个数、功率以及加热时间等进行传热仿真分析。同时,需要通过仿真模态分析对试验结果的可靠性进行验证。本研究中,将由闪光瞬态法得到的材料热特性参数代入有限元计算软件 ABAQUS 进行仿真计算得到结构的温度分布。热量以热传导方式从筒外侧传递到结构内部,在十字梁上选取3个位置的特征点与理论模型计算的结果进行对比,特征点(T1~T3)的位置及结构网格如图4所示。在考虑及不考虑材料热特性(即材料的热导率和比热容)随温度变化而改变的情况下,计算得到50000s 传热时间内3个位置点的温度变化曲线,如图5~图7所示。

图 4 模型中的特征测点位置 Fig. 4 Positions of characteristic measuring points on the

46

可以看出,是否考虑材料参数随温度的变化对 传热过程的仿真计算结果有很大的影响,并且越靠 近结构中心(即实际安装仪器位置)的误差越大。

3.2.2 热振耦合仿真计算

热环境对结构模态的影响主要体现在对结构 刚度的影响,因此结构刚度在热环境中的变化规律 能够反映出结构的热振耦合作用机理。用有限元方 法对结构进行模态分析时会对结构的刚度矩阵和 质量矩阵进行计算,对比不同温度场下输出的结构 刚度矩阵可得到结构在热环境中的刚度变化。由于 输出矩阵的单元数过多,选出前 50 个单元的刚度 矩阵大小绘制曲线,如图 8 所示。

Fig. 8 Stiffness curves of structural units at different temperatures

从图 8 可以看到,典型结构的前 50 个单元的 刚度随温度变化发生明显改变:一方面,刚度曲线 的峰值发生了改变,总体表现在随着温度的升高, 刚度的峰值降低,符合仿真分析计算结果;另一方 面,刚度曲线峰值的位置发生了改变,甚至有峰值 缺失或者增大现象。由此可见,温度对结构刚度的 影响不仅仅体现在数值大小的变化上,还会改变结 构刚度的最值位置。因此,在实际结构设计中,通 过刚度计算可以预示在不同温度场下的结构刚度 薄弱位置,为更深层次的热振耦合机理研究奠定 基础。

将计算的温度场结果作为预定义场导入热应 力计算中,在温度场和热应力场叠加作用下进行模 态计算,得到结构的振型和固有频率。在进行网格 无关性检验后得到的网格数计算结果收敛性良好。 设定4种温度工况(20℃、200℃、300℃和400℃), 得到温度场、应力场以及2个场共同作用对结构固 有频率的影响,结果表明模态振型没有明显变化, 不同温度下结构的前6阶固有频率如表2所示。

表 2 不同温度下结构的前 6 阶固有频率

 Table 2
 The first six natural frequencies of the structure at different temperatures

温度/℃	结构固有频率/Hz						
	1阶	2阶	3阶	4阶	5阶	6阶	
20	24.697	47.871	184.76	189.01	216.72	229.77	
200	24.544	47.564	183.83	188.03	215.25	228.45	
300	24.407	47.288	183.14	187.31	214.19	227.50	
400	24.249	46.970	182.25	186.38	212.79	226.27	

4 结束语

本文提出一种材料热特性参数与振动动态耦 合的分析方法,用来提高传热分析的精度以及获取 热环境下结构的振动特性。针对某火箭筒形仪器舱 段结构进行建模以及仿真计算,首先进行传热计 算,得到温度分布后计算结构的热应力,然后在温 度场和应力场叠加情况下进行结构模态分析,并对 比不同热环境下的计算结果。结果显示:

1)针对该结构,在计算过程中考虑材料的热特 性参数随温度的变化可提高结构传热仿真精度,继 而提高结构热振耦合分析的温度场加载准确性。

2)热环境对火箭仪器舱结构的影响主要体现 在结构固有频率随温度升高小幅降低,对结构的振 型基本没有影响。温度场升高使材料热退化导致结 构的固有频率下降,由于温度场产生的热应力导致 结构的固有频率上升,而对火箭仪器舱的热振耦合 分析显示温度导致的材料热退化占主导地位。

综上,考虑材料热特性随温度变化的动态热振 耦合方程可提高传热仿真分析的精度和可靠度,可 为建立热振耦合试验装置提供参考,并可推广到火 箭仪器舱在热环境中的动力学特性变化的预测中。

参考文献(References)

- [1] 范绪箕. 气动加热与热防护系统[M]. 北京: 科学出版社, 2003: 1-157
- [2] HEEG J, ZEILER T A, POTOTZKY A S, et al. Aerothermoelastic analysis of a NASP demonstrator model: NASA-TM-109007[R]//34th AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics and Materials Conference. La Jolla, CA, USA, 1993: 617-627
- [3] INAMORI T, WANG J, SAISUTJARIT P, et al. Jitter reduction of a reaction wheel by management of angular momentum using magnetic torques in nano- and microsatellites[J]. Advances in Space Research, 2013, 52(1): 222-231
- [4] ZHANG Y, XU S. Vibration isolation platform control moment gyroscopes on satellites[J]. Journal of Aerospace Engineering, 2011, 25(4): 641-652
- [5] 吴王浩,段旭,张鑫,等. 高马赫数钝头体气动/传热一体 化计算方法研究[J]. 空天防御, 2022, 5(3): 87-92
 WU W H, DUAN X, ZHANG X, et al. Research on the integrated calculation method of aerodynamics and heat transfer for hypersonic blunt body[J]. Air & Space Defense, 2022, 5(3): 87-92
- [6] 李林莉,薛春霞. 压电材料矩形板的热振动分析[J]. 中北 大学学报(自然科学版), 2019, 40(1): 1-7
 LI L L, XUE C X. Thermal vibration analysis of piezoelectric materials rectangular plates[J]. Journal of North University of China: Natural Science Edition, 2019, 40(1): 1-7
- [7] KEHOR M W, DEATON V C. Correlation of analytical and experimental hot structure vibration results: NASA-

TM-104269[R], 1997: 1-18

- [8] ZHANG W, CHEN H, ZHU D, et al. The thermal effects on high-frequency vibration of beams using energy flow analysis[J]. Journal of Sound and Vibration, 2014, 333(9): 2588-2600
- [9] 沙云东, 艾思泽, 张家铭, 等. 热流环境下薄壁结构随机 振动响应计算与疲劳分析[J]. 航空动力学报, 2020, 35(7): 1402-1412
 SHA Y D, AI S Z, ZHANG J M, et al. Random vibration response calculation and fatigue analysis of thin-walled structures under heat flux environment[J]. Journal of Aerospace Power, 2020, 35(7): 1402-1412
 [10] 吴大方, 林鹭劲, 吴文军, 等. 1500 ℃ 极端高温环境下高
- [10] 关入方, 林莺切, 关文半, 守. 1300 ℃ 极端高温环境下高超声速飞行器轻质热防护材料热/振联合试验研究[J]. 航空学报, 2020, 41(7): 223612
 WU D F, LIN L J, WU W J, et al. Thermal/vibration test of lightweight insulation material for hypersonic vehicle under extreme-high-temperature environment up to 1500 ℃[J]. Acta Aeronautia et Astronautica Sinica, 2020, 41(7): 223612
- [11] PARKER W J, JENKINS R J, BUTLER C P, et al. Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity[J]. Journal of Applied Physics, 1961, 32(9): 1679-1684
- [12] 张嘉芮,张圣梓,刘晓萌,等. 激光闪光法测量固体材料 热扩散率的研究进展[J]. 计量学报, 2023, 44(2): 203-210 ZHANG J R, ZHANG S Z, LIU X M, et al. Research progress of laser flash method in measuring thermal diffusivity of solid materials[J]. Acta Metrologica Sinica, 2023, 44(2): 203-210

(编辑:武博涵)

一作简介:薛景天,博士研究生,研究方向为热振耦合及热疲劳研究。

^{*}通信作者:董龙雷,教授,主要研究方向为航天器结构综合力学环境仿真、试验与预示,航天器复杂结构/系统振动 控制。