承力筒模态分析与测试

姚 骏,张红英,崔 伟,杜 胜 (上海卫星工程研究所,上海 200240)

摘要:对卫星的关键主承力结构——承力筒进行模态分析与测试是了解其结构特性的重要手段。文章采用悬挂法和 固支法对某卫星用两种结构设计的承力筒进行了模态分析与测试,并对比分析了这两种方法对分析与测试结果的影响, 最终确定了承力筒的模态特性。模态试验属于有效性确认试验,应根据具体的试验对象,慎重选择合理的试验方法。

 关键词:承力筒;摸态分析;摸态试验;悬挂法;固支法

 中图分类号:V416.6

 文献标识码:A

DOI: 10.3969/j.issn.1673-1379.2010.01.017

文章编号:1673-1379(2010)01-0083-04

1 前言

承力简承载卫星主要载荷,是卫星结构组装的 核心,是影响卫星结构强度、连接刚度和整星动态 频率特性等性能的关键主承力结构^[1]。承力筒设计 与制造的质量成为卫星研制过程中关注的焦点。

模态试验可以确定结构的传递特性(包括模态频 率、模态振型、模态阻尼比等模态参数);检查结构 动态特性是否符合设计要求,发现其结构设计缺陷, 为结构修改提供依据;为结构数学模型的验证和修 改、响应预示、振动控制、稳定性分析以及航天器与 运载火箭的动力学耦合分析等提供依据^[24]。因此,对 承力筒进行模态试验是了解其结构特性的重要手段。

本文分别用悬挂和固支两种测试方法对某卫 星的两种结构设计的承力筒进行了模态测试与分 析,并阐述了这两种测试方法对测试结果的影响。

2 承力筒的结构设计

某卫星承力筒是采用整体形式,由筒体、端框、 贮箱安装框和纵向连接件(桁条)等组成。其中, 筒体推进舱段为锥形,服务舱段为柱形,下端外径 为 \$\phi 910 mm,上端外径为 \$\phi 500 mm,整筒高度为 1 238 mm。承力筒筒体是由碳纤维 T300-3K 面板和 铝蜂窝组成的夹层结构。承力筒除下端框采用铝合 金锻材 LD10CS 之外,其他端框(上端框、中端框、 贮箱上安装框、贮箱下安装框)、端框加强件和纵 向连接件均采用 T700S-12K 碳纤维模压成型。承 力筒设计质量为 22.5 kg。 根据型号的研制需要,先后对承力简进行了两 轮设计。承力筒 II 是在承力筒 I 上进行的改进和优 化,两种设计的外形尺寸保持一致。两种承力筒结 构见图 1,它们技术状态的差异性比较见表 1。

图 1 承力简结构示意图(左为承力简 I,右为承力简 II) Fig. 1 Structure schematic diagram of the loaded cylinder (before and after optimization)

表 1 承力筒两种状态的结构设计差异性比较表 Table 1 The structure differences of the loaded cylinder before and after optimization

	und unter optimization					
序号	比较项目	承力筒 I	承力筒 II	改进后 效果		
1	锥段内外 蒙皮铺层	$\pm 45^{\circ}/0^{\circ}/90^{\circ}$	±45°/0°/∓ 45°	优化刚度和 强度,提高		
2	柱段内外 蒙皮铺层	$\pm45^{\circ}/0^{\circ}$	$\pm 45^{\circ}/0^{\circ}/90^{\circ}$	夹层结构稳 定性		
3	纵向连接 件(桁条)	单个,不连续	连续	优化刚度		
4	锥段开孔	6个 Ø 50 孔	2个 Ø 50 孔	优化结构强		
5	柱段开孔	<i>φ</i> 80 和 <i>φ</i> 50 各1个	<i>φ</i> 60 和 <i>φ</i> 50 各1个	度,降低应 力水平		

3 承力筒的模态分析与试验

3.1 模态分析(固支法)

根据设计参数,利用 MSC/Patran 软件建立了

收稿日期: 2009-09-03; 修回日期: 2009-10-21

作者简介:姚 骏(1973-),男,高级工程师,从事卫星结构与机构的设计和研制。E-mail: 509yaojun@sina.com。

承力筒 I、承力筒 II 的有限元模型,端框及桁条离 散成梁单元,筒体按层合板离散成板壳单元。利用 MSC/Nastran软件分别对两个模型进行了固定于地 基的模态计算。承力筒 I、II 的有限元模型见图 2, 其振型参见图 3、图 4,分析结果见表 2。从理论 分析可以看出承力筒 II 的基频大于承力筒 I。

- 图 2 采用固支法的承力简有限元模型(左为承力简 I, 右为承力简 II)
- Fig. 2 The FEM model of the cylinder by fixing method (before and after optimization)

- 图 3 承力筒 I 采用固支法的模态分析振型图(左为一阶, 右为二阶)
 - Fig. 3 The calculated modal shapes of the loaded cylinder I (before optimization) by fixing method (the left is mode 1, the right is mode 2)

- 图 4 承力筒Ⅱ采用固支法的模态分析振型图(左为一阶, 右为二阶)
 - Fig. 4 The calculated modal shapes of the loaded cylinder II (after optimization) by fixing method (the left is mode 1, the right is mode 2)

表 2 采用固支法的模态分析结果

Table 2 The modal analysis results of the cylinder by fixing method

-	承刀筒Ⅰ/Hz	承刀筒Ⅱ/Hz
一阶横向弯曲	271.55	282.26
二阶横向弯曲	486.89	552.73

3.2 模态试验

为了验证承力简产品整体模态特性与分析导 出值的一致性,为修正整星分析模型和鉴别承力简 频率特性对整星总体模态特性的影响分析、进一步 对承力简优化设计提供依据,进行了单简状态下的 模态试验。

对于产品的模态试验,一般采用固支法或悬挂 法。采用固支法时,要求支承基础的固有频率一般 应高于结构分析最高阶固有频率的5倍,支撑基础 的质量一般应大于卫星质量的10倍。采用悬挂法 时,要求悬挂系统的固有频率应小于试件一阶固有 频率的1/5。

3.2.1 承力筒 I 的模态试验(悬挂法)

在上海交通大学进行了承力筒I的模态试验。

由于上海交通大学试 验室的地基频率约为 300 Hz,而承力筒的基 频在 200~300 Hz 之 间,因此当时不能采用 固定于地基的方法,只 能采用悬挂法,所以选 取的试验方法是带底 座的近似悬挂法。底座 采用钢材制成,质量为 163 kg。试验状态参见 图 5,测试结果见表 3, 振型见图 6。

图 5 承力筒 I 采用悬挂法的 模态试验现场图

Fig. 5 The modal test scene of the loaded cylinder I by hanging method

表 3 承力筒 I 采用悬挂法的模态试验结果 Table 3 The modal test results of the loaded cylinder I by

- 图 6 承力筒 I 采用悬挂法的模态试验振型图(左为一阶, 右为二阶)
- Fig. 6 The test modal shapes of the loaded cylinder I by hanging method (the left is mode 1, the right is mode 2)

3.2.2 承力筒II的模态试验(固支法)

承力筒 II 在上海卫星工程研究所进行了模态 试验。该试验地基基频为 980 Hz, 远大于承力筒一 阶固有频率, 因此将承力筒固定于地基上进行模态 试验,即承力筒通过三段 120°的压环压在下端框与 地基固连; 激振方法为锤击法, 锤击位置位于承力 筒上端面。试验状态参见图 7, 测试结果见表 4, 振型见图 8。

图 7 承力筒 II 采用固支法的模态试验现场图 Fig. 7 The modal test scene of the loaded cylinder II by fixing method

- 图 8 承力筒 II 采用固支法的模态试验振型图(左为一阶, 右为二阶)
- Fig. 8 The test modal shapes of the loaded cylinder II by fixing method
 - 表 4 承力筒 Ⅱ采用固支法的模态试验结果
- Table 4
 The modal test results of the loaded cylinder II by fixing method

阶数	频率/Hz	模态阻尼/%	振型描述
1	215.6	0.46	端框呼吸
2	250.6	1.36	一阶横向弯曲
3	441.7	3.15	呼吸
4	485.6	2.38	
5	543.7	1.65	二阶横向弯曲

从表 3、表 4 可以看出,对于整星频率影响最 大的一阶弯曲,优化后的承力筒 II 的频率没有提 高,反而有一定程度的下降,这与最初的设计分析 不相符。经分析,承力筒两种试验状态的差别是造 成该问题的主要原因。

3.3 补充模态分析(悬挂法)

根据承力筒 I 带底座的近似悬挂法试验时的 技术状态,对承力筒 I、Ⅱ分别建立了带悬挂工装 的有限元模型,随后进行了模态计算。承力筒Ⅱ的 有限元模型见图 9,两个承力筒的模态分析振型分 别见图 10、图 11,分析结果见表 5。

图 9 承力筒 II 采用悬挂法的有限元模型图

Fig. 9 The FEM model of the loaded cylinder II by hanging method

- 图 10 承力筒 I 采用悬挂法的模态分析振型图(左为一阶, 右为二阶)
- Fig. 10 The calculated modal shapes of the loaded cylinder I by hanging method (the left is mode 1, the right is mode 2)

- 图 11 承力筒 II 采用悬挂法的模态分析振型图(左为一阶, 右为二阶)
- Fig. 11 The calculated modal shapes of the loaded cylinder II by hang method (the left is mode 1, the right is mode 2)

 Table 5
 The modal analysis results of the loaded cylinder by hanging method

	承力筒 I /Hz	承力筒 II /Hz
一阶横向弯曲	263.12	266.05
二阶横向弯曲	483.72	578.37

分析结果表明,承力筒在不同的状态下模态特 性存在一定的差异性。比较表 2、表 5 的结果可以 看出,通过悬挂法得到的承力筒模态频率较通过固 支法得到的模态频率偏高。

3.4 补充模态试验(悬挂法)

为了进一步验 证分析结果、更加深 入细致地比较承力 筒 I、II的差别,在 上海卫星工程研究 所利用与承力筒 I 模态试验、采用悬挂法 进行了承力筒 II的 模态试验。试验状态 见图 12,测试结果见 表 6,振型见图 13。

图 12 承力筒 II 采用悬挂法的 模态试验现场图 Fig. 12 The modal test scene of the loaded cylinder II by hang method

表 1 承力筒Ⅱ采用悬挂法的模态试验结果

 Table 6
 The modal test results of the loaded cylinder II by hanging method

阶数	频率/Hz	模态阻尼/%	振型描述
1	217.6	0.28	端框呼吸
2	258.8	1.14	一阶横向弯曲
3	434.4	0.92	呼吸
4	446.3	1.44	
5	573.3	1.52	二阶横向弯曲

- 图 13 承力筒 II采用悬挂法的模态试验振型图(左为一阶, 右为二阶)
- Fig. 13 The test modal shapes of the loaded cylinder II by hanging method (the left is mode 1, the right is mode 2)

3.5 模态分析与试验结果的比较

有关承力筒模态频率的分析与试验的主要数 据见表 7。由于悬挂法引入了附加系统,而附加系 统的质量与刚度均远大于承力筒的质量与刚度, 此时在悬挂法下的系统模态体现为承力筒的局部 模态,因此与承力筒在固支法下的模态具有一定 的可比性。承力筒在固支法和悬挂法两种不同的边 界条件下得出的一阶、二阶横向弯曲的振型近似, 分析与试验结果吻合。但毕竟导入了附加系统,悬 挂法下承力筒的模态特性因其影响而有所差异,所 以承力筒的模态特性应为通过固支法下得到的模 态特性。

从表 7 可以看出,承力筒 II 相比承力筒 I 在刚 度特性上有一定的加强,这与设计的初衷是一致 的。

表 7 承力筒模态频率的分析、试验数据汇总表 Table 7 Comparison between analysis and test results for the loaded cylinder

方法		固支法		悬挂法	
承力筒 I	分析值	271.55	486.89	263.12	483.72
频率/Hz	试验值			257.59	432.71
承力筒II	分析值	282.26	552.73	266.05	578.37
频率/Hz	试验值	250.60	543.70	258.80	573.30
ŦE	开山	一阶横	二阶横	一阶横	二阶横
振 空		向弯曲	向弯曲	向弯曲	向弯曲
备 注				振型	固支
				法近他	J

4 结束语

模态试验的目的是确认模态分析的有效性,提供试验数据来修正有限元模型并重新进行分析。

对承力筒进行模态试验是确认卫星结构研制 质量的关键环节,选择合理的试验手段和方法显得 尤为重要,值得研制人员关注。

参考文献(References)

- [1] 袁家军. 卫星结构设计与分析[M]. 北京: 中国宇航出 版社, 2004-04
- [2] GJB 2497—1995, 卫星结构试验方法[S]
- [3] GJB 2706A—2008, 航天器模态试验方法[S]
- [4] 李宁, 冯咬齐, 岳志勇. 卫星承力筒结构的模态试验 方法探讨[J]. 航天器环境工程, 2009, 26(4): 365