Abstract:
This paper describes the principles and capabilities of a self-developed radiation-based aerodynamic heating simulation system, and demonstrates its applications in the thermal testing and high-temperature strength testing of the materials and structures used in hypersonic flight vehicles. The aerodynamic heating simulation system is capable of producing nonlinear dynamic thermal shocks with a heating rate up to 200 ℃/s, a heat flux of 1.8 MW/m2, and a highest temperature up to 1500 ℃. A number of experiments were carried out on the developed heating simulation system. These experiments include: (1) the heat-insulation property testing for a high-temperature composite materials SiC/SiC specimen at high-temperature of 1300~1500 ℃; (2) experimental and numerical investigations of the heat-shielding properties of metallic honeycomb panel structure in non-linear thermal environment up to 950 ℃; (3) high-temperature thermal environment simulation experiment for the inner surface of a 2.1 m long circular shell, which uses a novel axial non-segmented single regional approach to improve the uniformity of the in-wall temperature field of a large structure. By using non-contact optical metrology, the full-field high-temperature deformation can be measured up to 1550 ℃. This aerodynamic heating simulation system and the testing methods reach or approach the advanced international standards in terms of the controllable non-linear rate of the temperature rise, the dynamic change process simulation of high-temperature and high heat flux density, the accuracy in the thermal experimental environment simulation and the non-contact full-field deformation measurement method for high-temperature objects.