[1] |
Sakuraba K, Tsuruda Y, Hanada T, et al. Investigation and comparison between new satellite impact test results and NASA standard breakup model[J]. International Journal of Impact Engineering, 2008, 35: 1567-1572
[2] Hanada T . A new low-velocity satellite impact experiment[J]. Orbital Debris Quarterly News, 2005, 9(3)
[3] Hanada T, Tsuruda Y, Liou J C. New satellite impact experiments[J]. Orbital Debris Quarterly News, 2006, 10(3)
[4] Hanada T, Sakuraba K, Liou J C. Three new satellite impact tests[J]. Orbital Debris Quarterly News, 2005, 11 (4)
[5] Murakami J, Hanada T, Liou J C, et al. Two new microsatellite impact tests in 2008[J]. Orbital Debris Quarterly News, 2009, 13(1): 1
[6] Hyde J, Davis A, Christiansen E. International space station hand rail and extravehicular activity tool impact damage[J]. Orbital Debris Quarterly News, 2008, 12(3): 7
[7] Christiansen E, Prior T, Lyons F, et al. ISS Zarya control module impact damage[J]. Orbital Debris Quarterly News, 2007, 11 (4): 10
[8] Hyde J, Christiansen E, Lear D, et al. Investigation of MMOD impact on STS-115 shuttle payload bay door radiator[J]. Orbital Debris Quarterly News, 2007, 11(3): 7
[9] Williamsen J E, Schonberg W P, Evans H, et al. A comparison of NASA, DOD, and hydrocode ballistic limit predictions for spherical and non-spherical shapes versus dual- and single-wall targets, and their effect on orbital debris penetration risk[J]. International Journal of Impact Engineering, 2008, 35: 1870-1877
[10] Beissel S R, Gerlach C A, Johnson G R. A quantitative analysis of computed hypervelocity debris clouds[J]. International Journal of Impact Engineering, 2008, 35: 1410-1418
[11] Hu Kuifeng, Schonberg P W. Ballistic limit curves for non-spherical projectiles impacting dual-wall spacecraft
systems[J]. International Journal of Impact Engineering 2003, 29: 345-355
[12] Tanaka K, Nishida M, Ogawa H, et al. Hypervelocity crater formation in aluminum alloys at low temperatures[J]. International Journal of Impact Engineering, 2008, 35: 1821-1826
[13] Numata D, Ohtani K, Anyoji M, et al. HVI tests on CFRP laminates at low temperature[J]. International Journal of Impact Engineering, 2008, 35 1695-1701
[14] Myers Corbett B. Selecting a best-fit temperature-dependent regression model for thin target HVI data[J]. International Journal of Impact Engineering, 2008, 35: 1672-1677
[15] Piekutowski A J, Poormon K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s[J]. International Journal of Impact Engineering, 2008, 35: 1716-1722
[16] Piekutowski A J, Poormon K L. Development of a three-stage, light-gas gun at the University of Dayton Research Institute[J]. International journal of Impact Engineering, 2006, 33: 615-624
[17] Chhabildas L C, Reinhart W D, Thornhill T F, et al. Debris generation and propagation phenomenology from hypervelocity impacts on aluminum from 6 to
11 km/s[J]. International Journal of Impact Engineering, 2003, 29: 185-202
[18] Knudson M D, Hall C A , Lemke R, et al. High velocity flyer plate Launch capability on the Sandia Z accelerator[J]. International Journal of Impact Engineering 2003, 29: 377-384
[19] 龚自正, 杨继运, 代福, 等. CAST空间碎片超高速撞击试验研究进展[J]. 航天器环境工程, 2009, 26(4): 301-306
[20] Gong Zizheng, Dai Fu, Zhang Wenbing, et al. The laser-driven flyer system for space debris hypervelocity impact simulations[J]. Nuclear Instruments and Methodsin Physics Research (B), 2009, 167: 1120-1125
|