目标飞行器舱内流场设计验证与评价

Verification and evaluation of flow field design for sealed cabin of target spacecraft

  • 摘要: 目标飞行器密封舱内流场设计是实现舱内温湿度控制、污染物扩散的基本途径,是保证长期在轨驻留航天员热舒适性的重要手段。文章分析确定了目标飞行器流场设计地面验证的等温化试验准则,通过保证流场温差不大于1 ℃,降低地面自然对流的影响,使微重力环境下工作的流场设计在地面环境得到有效验证。结果表明,航天员活动区88.3%区域风速在0.08~0.5 m/s之间,睡眠区风速均在0.08~0.2 m/s之间,均满足指标要求。目标飞行器流场最佳风速范围(0.076~0.203 m/s)所占比例为82.8%,优于国际空间站各舱段最佳风速范围所占比例。

     

    Abstract: The flow field design in the pressurized module of target spacecraft is a basic step for the temperature and humidity control and the contaminant diffusion, and it is important for the thermal comfort of astronauts working for a long term in orbit. An isothermal experimental scheme for the flow field ground test is proposed in this paper and the flow field design is validated in the ground test by keeping the air temperature in the flow field zone with variations not more than 1℃ so that the effect of the natural convection can be neglected. The tested air velocity in 88.3% of the astronaut working zone takes values between 0.08~0.5 m/s and between 0.08~0.12 m/s in the sleeping zone. The flow field design for the microgravity condition is successfully verified by ground tests. The percentage of the optimal air velocity in the range 0.076~0.203 m/s in the target-spacecraft flow field is up to 82.8%, which is better than that in the International Space Station modules.

     

/

返回文章
返回