超高速等离子体束团空间传输特性及影响因素剖析

Analysis of spatial propagation and influencing factors of ultrahigh-speed plasma clouds

  • 摘要: 超高速等离子体束团在轨道空间的有效传输是研究等离子体束团与材料物质相互作用的基础。文章通过构建束团传输模型并设定初始参数,利用COMSOL软件的稀薄物质传递模块对500~1000 km高度范围不同背景风场、轨道高度和初始密度下等离子体束团的漂移–扩散过程进行了数值仿真。结果表明,在出射速度为100 km/s、传输距离为10 km条件下,风场对等离子体束团传输 0.1 s 时的密度分布影响不明显,等离子体束团的中心密度从无风时的1.48×1020 m-3降至风速为1500 m/s时的1.23×1020 m-3;随着轨道高度升高,等离子体束团传输加快且整体密度下降;He+/e-云的数密度随束团初始密度增加而扩散加快。超高速等离子体束团的空间传输受环境和自身参数影响显著。该研究成果可为等离子体束团发射装置的设计与应用提供参考。

     

    Abstract: Understanding the propagation of ultrahigh-speed plasma clouds in orbit is critical for studying their interactions with spacecraft materials. In this study, a drift-diffusion model was established using COMSOL’s rarefied gas transport module to simulate their behavior under varying neutral wind fields, orbital altitudes (500–1000 km), and initial plasma densities. The results indicate that at an initial velocity of 100 km·s-1 and a propagation distance of 10 km, wind fields exert negligible influence on the plasma cloud’s density distribution at 0.1 s: the central density drops from 1.48×1020 m-3 (without wind) to 1.23×1020 m-3 (1500 m·s-1 wind). Increasing orbital altitude accelerates propagation but lowers overall plasma density, while higher initial densities promote faster diffusion of He+/e- clouds. These findings demonstrate the significant influence of environmental and intrinsic parameters on plasma cloud dynamics, providing theoretical guidance for the design of emission systems.

     

/

返回文章
返回