基于系统级试验反演的星载光学次级机构随机振动激励谱优化方法

Random vibration spectrum optimization for spaceborne optical mechanisms based on system-level test inversion

  • 摘要: 星载光学次级机构的传力路径复杂、高频仿真精度有限、性能易受振动环境影响,且试验数据积累不足,其随机振动试验条件的制定缺乏统一标准,常需在产品研制过程中进行多轮探索和调整。文章提出一种基于系统级噪声试验结果的光学次级机构随机振动条件优化方法:结合组件级随机振动试验和系统级噪声试验的加速度响应数据,构建频响函数与谱形裁剪模型,通过有限元仿真与多变量优化实现载荷条件向产品安装界面的有效映射。该方法可降低试验条件与实际工况之间的偏差,避免因加载不当导致的设计过裕或重复参试,提高振动敏感型星载光学产品的试验效率与研制质量,为复杂航天产品力学试验条件制定提供了可推广的工程路径。

     

    Abstract: Spaceborne optical secondary mechanisms pose significant challenges in defining random vibration test conditions due to complex load paths, limited high-frequency simulation accuracy, and insufficient experimental data accumulation, often necessitating multiple design-test iterations during product development. This study proposes an optimization method for random vibration conditions based on system-level acoustic test data. Acceleration response data from component-level random vibration tests and system-level acoustic tests were integrated to construct a frequency response function and a spectrum optimization model. Through finite element simulation and multivariate optimization, the method allows for accurate prediction of interface load conditions. This approach reduces discrepancies between test conditions and actual operational environments, avoids over-design and redundant testing due to improper loading, and enhances the test efficiency for vibration-sensitive spaceborne optical products. The proposed methodology provides a practical framework for validating vibration-sensitive aerospace components.

     

/

返回文章
返回