Modeling and evaluation for accelerated storage life test of assembly missile equipment
-
摘要:
针对多失效模式、多失效机理、小子样导弹整机产品贮存寿命加速试验与评估面临的难题,提出整机贮存寿命加速试验建模方法,通过建立基于竞争失效的整机贮存寿命模型,综合考虑零部组件产品的贮存寿命信息,开展整机加速因子综合计算;提出基于试验长度因子的小子样整机贮存可靠度评估方法,通过加长试验时间达到利用小子样验证高贮存可靠度的目的。最后给出典型伺服机构加速试验案例分析,证明方法的有效性。该方法可为开展小子样整机产品贮存寿命加速试验与寿命评估提供一种新的技术途径。
Abstract:This paper addresses the challenges associated with conducting accelerated storage life tests and evaluations for assembly missile equipment that exhibits multiple failure modes and mechanisms, particularly under the constraint of small missile sample size. A novel method for modeling the accelerated storage life test of such equipment was proposed. The method involved establishing a storage life model based on competitive failures and incorporated the storage life information of individual components. An integrated approach for dermining the acceleration factor of assembly missile equipment was developed. Furthermore, a method for evaluating the storage reliability of assembly missile equipment with small sample sizes was introduced, utilizing a test length factor to validate high storage reliability by prolonging the test duration. The effectiveness of the proposed method was demonstrated through a case study of a servo mechanism acceleration test. This research offers an innovotive technical approach for carrying out accelerated storage life tests and evaluations on assembly missile equipment when sample sizes are limited.
-
-
表 1 伺服机构典型贮存失效模式及机理
Table 1 Typical storage failure modes and mechanisms of the servo mechanism
部组件 失效模式 失效机理 电动机 输出力过小 绝缘老化,内电阻压降增大 橡胶
密封圈油液泄漏 密封圈老化,同时周期性温度循环应力作用下材料变形,导致密封失效 伺服阀 参数零偏过大 长期应力作用导致弹簧老化蠕变,材料应力释放等 线性位移
传感器参数漂移导致
线性度超差导电基体树脂材料老化变形 表 2 某型伺服机构贮存薄弱部组件贮存寿命试验数据
Table 2 Life test data of weak-storage components in a servo mechanism during storage
部组件 数量 寿命分布 分布参数 激活能/eV 电动机(含电连接器) 1 威布尔分布 η=49.0 a;m=3.8 0.53 密封件 增压活塞 1 威布尔分布 η=21.3 a,m=4.0 0.61 往复阀 2 油缸 1 油箱盖部件 1 油滤盖板部件 1 导向密封部件 1 管接头部件 2 堵头 14 伺服阀 1 威布尔分布 η=58.0 a;m=4.2 0.47 线性位移传感器 1 威布尔分布 η=95.6 a;m=3.3 0.92 表 3 伺服机构寿命分布参数
Table 3 Life distribution parameters of the servo mechanism
温度应力/℃ 形状参数 特征寿命/a 相关系数 加速因子 21 3.74 9.75 0.996 — 65 3.74 0.42 0.998 23.5 表 4 伺服机构加速试验剖面参数
Table 4 Parameters of the servo mechanism acceleration test profile
贮存阶段 基准贮存环境剖面 加速验证试验剖面 敏感应力 持续时间 模拟条件 加速条件 加速因子 加速时间 库房贮存 温度 4380 h 21 ℃ 65 ℃ 23.5 186 h 战备值班 温度 4380 h 21℃ 65 ℃ 23.5 186 h 温度循环 183个循环 温差15 ℃ -20~65 ℃ 11.3 16个循环 定期检测 电应力 2次/年 — — 1 2次 -
[1] 王浩伟, 滕克难, 吕卫民. 导弹贮存延寿试验关键技术及研究进展[J]. 含能材料, 2019, 27(12): 1004-1016 DOI: 10.11943/CJEM2019038 WANG H W, TENG K N, LÜ W M. Review on key technologies for missile storage and life extension test[J]. Chinese Journal of Energetic Materials, 2019, 27(12): 1004-1016 DOI: 10.11943/CJEM2019038
[2] LIU Z, LIU X. Storage reliability assessment for the stored equipment under periodical inspection[J]. Advances in Mechanical Engineering, 2018, 10(6): 1-7
[3] 张阳, 杜剑. 石英加速度计贮存延寿试验薄弱环节的辨识[J]. 空间电子技术, 2021, 18(1): 80-86 DOI: 10.3969/j.issn.1674-7135.2021.01.015 ZHANG Y, DU J. Identification for weak links on storage life of quartz accelerometer[J]. Space Electronic Technology, 2021, 18(1): 80-86 DOI: 10.3969/j.issn.1674-7135.2021.01.015
[4] 宫晓春, 秦玉灵, 赵薇, 等. 某型金属减振器的加速贮存验证试验方法研究[J]. 装备环境工程, 2021, 18(4): 82-87 GONG X C, QIN Y L, ZHAO W, et al. Research on accelerated storage validation test method of a certain type metal damper[J]. Equipment Environmental Engineering, 2021, 18(4): 82-87
[5] 张世艳, 刘俊, 黄波, 等. 惯性器件加速贮存环境性能变化规律及失效机理[J]. 装备环境工程, 2019, 16(3): 76-80 ZHANG S Y, LIU J, HUANG B, et al. Performance change law and failure mechanism of inertial devices in accelerated storage environment[J]. Equipment Environmental Engineering, 2019, 16(3): 76-80
[6] NELSON W B. Accelerated testing: statistical models, test plans, and data analyses[M]. New York: John Wiley & Sons, 2015: 200-210
[7] NELSON W. Accelerated life testing: step-stress models and data analysis[J]. IEEE Transactions on Reliability, 2016, 29(2): 103-108
[8] GUO X H, YUAN X J, LIU G Y, et al. Storage life prediction of rubber products based on step stress accelerated aging and intelligent algorithm[J]. Polymers, 2023, 15(1): 157-166
[9] LI W H, ZHOU L L, LU W D. Reliability analysis of the sealed relay based on degradation data[J]. IEEE Transactions on Electrical and Electronic Engineering, 2018, 13(3): 362-366 DOI: 10.1002/tee.22576
[10] 张生鹏, 李宏民, 赵朋飞. 导弹装备贮存寿命加速试验技术体系探讨[J]. 装备环境工程, 2018, 15(2): 92-96 ZHANG S P, LI H M, ZHAO P F. Accelerated testing technology system for storage life of missile equipment[J]. Equipment Environmental Engineering, 2018, 15(2): 92-96
[11] 盖炳良, 滕克难, 王浩伟, 等. 整机级装备贮存延寿试验技术[J]. 火力与指挥控制, 2018, 43(1): 169-174 GAI B L, TENG K N, WANG H W, et al. Overview of storage life extension testing for assembly level equipment[J]. Fire Control & Command Control, 2018, 43(1): 169-174
[12] 秦强, 张生鹏. 综合环境条件下电子装备贮存寿命加速试验方法研究[J]. 装备环境工程, 2019, 16(3): 81-87 QIN Q, ZHANG S P. Accelerated storage test of electric equipment under integrated environmental stresses[J]. Equipment Environmental Engineering, 2019, 16(3): 81-87
[13] ZHANG C. Mechanical component lifetime estimation based on accelerated life testing with singularity extrapolation[J]. Mechanical Systems and Signal Processing, 2016, 29(2): 10-12
[14] 申争光, 范景春, 董静宇, 等. 弹上设备加速寿命试验中加速因子估计方法[J]. 系统工程与电子技术, 2015, 37(8): 1948-1952 SHEN Z G, FAN J C, DONG J Y, et al. Research on acceleration factor estimation method of accelerated life test of missile-borne equipment[J]. Systems Engineering and Electronics, 2015, 37(8): 1948-1952
[15] 苏承毅, 牟春晖, 何江, 等. 整机级加速贮存试验加速因子与真实度评估方法[J]. 战术导弹技术, 2015(1): 37-41 SU C Y, MOU C H, HE J, et al. Acceleration factor and fidelity assessment of system level accelerated aging test[J]. Tactical Missile Technology, 2015(1): 37-41
[16] 赵晓东, 穆希辉. 无失效数据下计算装置贮存寿命评估方法[J]. 系统工程与电子技术, 2021, 43(1): 272-278 DOI: 10.3969/j.issn.1001-506X.2021.01.34 ZHAO X D, MU X H. Evaluation method for storage life of computing devices under zero-failure data[J]. Systems Engineering and Electronics, 2021, 43(1): 272-278 DOI: 10.3969/j.issn.1001-506X.2021.01.34
[17] 张雷雷, 刘曦, 刘旭琳, 等. 无失效数据下弹上机电产品加速贮存寿命评估方法[J]. 系统工程与电子技术, 2023, 45(7): 2287-2294 ZHANG L L, LIU X, LIU X L, et al. Accelerated storage life assessment method under zero-failure data for electromechanical products of missile[J]. Systems Engineering and Electronics, 2023, 45(7): 2287-2294
[18] LI X S. The evaluation of storage life when disordered data appear in accelerated performance degradation tests[C]//2015 International Conference on Electrical, Automation and Mechanical Engineering. Phuket Island, 2015: 579-581
[19] PAN G Z, LUO Q, WANG Y H, et al. Research on an acceleration factor estimation method for accelerated life testing of high precision quartz flexible accelerometer[C]//9th International Conference on Information Technology in Medicine and Education. Hangzhou, 2018: 943-947
[20] 荣吉利, 白美, 刘志全. 加严条件下火工机构可靠性评估方法[J]. 北京理工大学学报, 2004, 24(2): 117-120 RONG J L, BAI M, LIU Z Q. Reliability assessment of pyrotechnical devices under rigorous conditions[J]. Transactions of Beijing Institute of Technology, 2004, 24(2): 117-120
[21] 祝学军, 管飞, 王洪波, 等. 战术弹道导弹贮存工程基础[M]. 北京: 中国宇航出版社, 2016: 10-21 [22] 李晓阳, 姜同敏. 加速寿命试验中多应力加速模型综述[J]. 系统工程与电子技术, 2007, 29(5): 828-831 LI X Y, JIANG T M. Review of multiple-stress models in accelerated life testing[J]. Systems Engineering and Electronics, 2007, 29(5): 828-831
[23] CRK V. Reliability assessment from degradation data[C]//Annual Reliability and Maintainability Symposium: International Symposium on Product Quality and Integrity. Los Angeles, 2000: 155-161
[24] 王浩伟, 滕克难. 基于加速退化数据的可靠性评估技术综述[J]. 系统工程与电子技术, 2017, 39(12): 2877-2885 WANG H W, TENG K N. Review of reliability evaluation technology based on accelerated degradation data[J]. Systems Engineering and Electronics, 2017, 39(12): 2877-2885
[25] ZHANG X P, SHANG J Z, CHEN X, et al. Statistical inference of accelerated life testing with dependent competing failures based on Copula Theory[J]. IEEE Transactions on Reliability, 2014, 63(3): 764-780 DOI: 10.1109/TR.2014.2314598
[26] WU M, SHI Y M, ZHANG C F. Statistical analysis of dependent competing risks model in accelerated life testing under progressively hybrid censoring using copula function[J]. Communications in Statistics-Simulation and Computation, 2017, 46(5): 4004-4017
[27] ZHOU Y C, LU Z Z, SHI Y, et al. The copula-based method for statistical analysis of step-stress accelerated life test with dependent competing failure modes[J]. Proceedings of the Institution of Mechanical Engineers Part O: Journal of Risk and Reliability, 2019, 233(3): 401-418 DOI: 10.1177/1748006X18793251
[28] CHEN Y X, ZHANG Q, CAI Z Y, et al. Storage reliability assessment model based on competition failure of multi-components in missile[J]. Journal of Systems Engineering and Electronics, 2017, 28(3): 606-616 DOI: 10.21629/JSEE.2017.03.20
[29] CHE H, ZENG S, GUO J, et al. Reliability modeling for dependent competing failure process with mutually dependent degradation process and shock process[J]. Reliability Engineering & System Safety, 2018, 180: 168-178
[30] 数据的统计处理和解释 二项分布可靠度单侧置信下限: GB/T 4087—2009[S]