《万方数据-数字化期刊群》全文上网期刊
CNKI《中国学术期刊(网络版)》全文收录期刊
《中文科技期刊数据库》(维普网)全文收录期刊
超星期刊域出版平台、博看网全文收录期刊
日本科学技术振兴机构数据库收录

卫星有源相控阵高热流微尺度器件热设计与验证

卢威, 李进, 周傲松, 陈腾博, 智国平, 邹雷

卢威, 李进, 周傲松, 等. 卫星有源相控阵高热流微尺度器件热设计与验证[J]. 航天器环境工程, 2024, 41(5): 574-580 DOI: 10.12126/see.2024030
引用本文: 卢威, 李进, 周傲松, 等. 卫星有源相控阵高热流微尺度器件热设计与验证[J]. 航天器环境工程, 2024, 41(5): 574-580 DOI: 10.12126/see.2024030
LU W, LI J, ZHOU A S, et al. Thermal design and verification of high heat flux microscale devices in active phased array of satellite[J]. Spacecraft Environment Engineering, 2024, 41(5): 574-580. DOI: 10.12126/see.2024030
Citation: LU W, LI J, ZHOU A S, et al. Thermal design and verification of high heat flux microscale devices in active phased array of satellite[J]. Spacecraft Environment Engineering, 2024, 41(5): 574-580. DOI: 10.12126/see.2024030

卫星有源相控阵高热流微尺度器件热设计与验证

基金项目: 某预先研究项目(编号:31504080402)
详细信息
    作者简介:

    卢 威,高级工程师,主要从事航天器热控制研究

  • 中图分类号: V211.3; V423.5; V524

Thermal design and verification of high heat flux microscale devices in active phased array of satellite

  • 摘要:

    为解决卫星有源相控阵高热流微尺度器件散热和热试验验证难题,首先,提出T/R模块低温共烧陶瓷热设计优化方案,选择热通孔面积比为11.4%,并建立尺度比为800∶1的跨尺度热模型;其次,进行地面常压热平衡试验,利用红外热像仪测量器件温度;再基于热参数敏感性分析方法评估自然对流、热辐射和热传导有关参数对器件温度的影响,结果表明:对于特征长度为600 μm的典型器件,接触热导对散热影响最大,而自然对流和热辐射影响均低于2%;基于常压热平衡试验数据修正热模型后的仿真与试验数据吻合良好,最大温度偏差1.7 ℃;高热流微尺度器件接触热导为16200 W/(m2·K),预示真空下器件的最高温度为73.2 ℃,满足工程要求。研究结果可为卫星高热流微尺度器件热设计和验证提供参考。

    Abstract:

    There exist difficulties in thermal test verification of heat dissipation for high heat flux microscale devices in active phased array of satellites. In this article, firstly, the optimized thermal design scheme of low temperature co-fired ceramic (LTCC) in transmit/receive (T/R) module was proposed. The area ratio of thermal vias of 11.4% was selected, and the cross-scale thermal model with scale ratio of 800∶1 was established. Secondly, the ground thermal balance test was conducted, and an infrared thermal imager was used to measure the device temperature under atmospheric pressure. The influence of natural convection, heat radiation, and heat conduction on devices’ temperature was evaluated based on thermal parameter sensitivity analysis. The results indicate that the thermal contact conductance for typical devices with a feature length of 600 μm has the greatest impact on heat dissipation, while the natural convection and heat radiation have a total impact of less than 2%. The thermal simulation model modified based on the results of thermal balance test under atmospheric pressure highly agrees with the experimental data. The maximum temperature deviation is 1.7 ℃, and the thermal contact conductance of high heat flux microscale devices is 16200 W/(m2∙K). The predicted temperature of the device in vacuum is 73.2 ℃, which meets the engineering requirement. The proposed study may provide references for thermal design and verification of high heat flux microscale devices used in satellites.

  • 图  1   T/R模块器件和LTCC热通孔设计示意图

    Figure  1.   Design schematic for T/R module devices and LTCC with thermal vias

    图  2   热通孔面积比对R的影响

    Figure  2.   Effect of area ratio of thermal vias on R

    图  3   T/R模块跨尺度网格模型

    Figure  3.   Cross-scale mesh model of T/R module

    图  4   热设计验证策略

    Figure  4.   Block diagram of thermal design verification

    图  5   红外热像仪测量的器件温度

    Figure  5.   Device temperature measured by infrared thermal imager

    图  6   界面上的接触热导

    Figure  6.   Thermal contact conductance at interfaces

    图  7   微尺度器件温度分布仿真云图

    Figure  7.   Temperature distribution nephogram of the microscale device

    表  1   微尺度器件热参数

    Table  1   Thermal parameters of the microscale devices

    器件编号 热耗/mW 尺寸/μm 热流密度/(W·cm-2)
    1 45 600×1100×80 6.8
    2 250 700×800×100 44.6
    3 35 600×1100×80 5.3
    4 50 600×1100×80 7.6
    5 50 900×2200×50 5.1
    下载: 导出CSV

    表  2   自然对流换热系数理论计算值

    Table  2   Theoretical values of natural convection heat transfer coefficients

    表面 瑞利数Ra 努塞尔数Nu 自然对流换热系数h/
    (W·m-2·K-1)
    器件1 0.024 0.629 90.13
    器件2 0.025 0.630 93.96
    器件3 0.022 0.624 89.50
    器件4 0.025 0.632 90.55
    器件5 0.191 0.792 57.34
    LTCC 2 163.731 3.588 11.65
    下载: 导出CSV

    表  3   器件温度对自然对流换热系数的敏感度分析

    Table  3   Sensitivity analysis of device temperature to natural convection parameter

    自然对流换热系数变化 器件2温度/℃ 器件4温度/℃
    标准情况 71.8 63.1
    器件表面 增加30% 71.7 63.0
    减小30% 71.9 63.2
    LTCC表面 增加30% 71.7 62.9
    减小30% 72.0 63.3
    下载: 导出CSV

    表  4   器件温度对半球红外发射率(ε)的敏感度分析

    Table  4   Sensitivity analysis of device temperature to hemispherical infrared emissivity (ε)

    ε 器件2温度/℃ 器件4温度/℃
    标准情况 71.8 63.1
    增加30% 71.7 63.0
    减小30% 71.9 63.2
    下载: 导出CSV

    表  5   器件温度对热传导参数的敏感度分析

    Table  5   Sensitivity analysis of device temperature to thermal conductive parameters

    热传导参数变化器件2温度/℃器件4温度/℃
    标准情况71.863.1
    热导率增加30%71.863.1
    减小30%71.963.1
    金属层
    厚度
    增加30%71.663.1
    减小30%72.163.1
    下载: 导出CSV

    表  6   器件温度对接触热导的敏感度分析

    Table  6   Sensitivity analysis of device temperature to thermal contact conductance

    接触热导变化 器件2温度/℃ 器件4温度/℃
    标准情况 71.8 63.1
    器件与LTCC
    基板间
    减小30% 76.1 64.1
    增加30% 69.5 62.5
    LTCC基板与
    钼铜底板间
    减小30% 71.8 63.1
    增加30% 71.8 63.1
    钼铜底板与
    试验台间
    减小30% 71.9 63.1
    增加30% 71.8 63.1
    下载: 导出CSV

    表  7   热模型修正后器件温度仿真结果与试验结果对比

    Table  7   Comparison of device temperatures between simulation results and experimentel results after modification of thermal model

    单位:℃
    器件
    编号
    试验台
    温度
    器件试验
    温度
    常压仿真
    温度
    真空预示
    温度
    2 60 71.8 72.9 73.2
    55 68.8 68.0 68.2
    4 60 64.4 63.4 63.6
    55 61.2 59.5 59.7
    下载: 导出CSV
  • [1]

    OSIANDER R, DARRIN M A G, CHAMPION J L. MEMS and microstructures in aerospace applications[M]. Boca Raton: CRC Press of Taylor Francis Group LLC, 2006: 1-3

    [2]

    SCHUH P, SLEDZIK H, REBER R, et al. T/R-module technologies today and future trends[C]//The 40th European Microwave Conference. Paris, 2010: 123-127

    [3]

    OGURA S, MIZUTANI T, HATAKEYAMA H, et al. High power L-band T/R module utilizing GaN HPA for satellite use[C]//The 29th AIAA International Communications Satellite Systems Conference (ICSSC). Nara, 2011: 458-463

    [4]

    JUNG Y B, EOM S Y, JEON S I, et al. The design of T/R module for X-band APAA system used in satellite communications[C]//Microwave Symposium Digest, IEEE MTT-S International. Seattle, WA, USA, 2002: 1337-1340

    [5] 王沫然, 李志信. 微尺度热科学及其在MEMS中的应用[J]. 仪表技术与传感器, 2002, 7: 1-4 DOI: 10.3969/j.issn.1002-1841.2002.05.001

    WANG M R, LI Z X. Microscale thermal science and its applications in MEMS[J]. Instrument Technique and Sensor, 2002, 7: 1-4 DOI: 10.3969/j.issn.1002-1841.2002.05.001

    [6]

    ZHAO Y, SUN B, XU J H. Design of an X-band T/R module with high power[C]//2nd China International SAR Symposium (CISS). Shanghai, 2021: 1-6

    [7]

    ZHANG L Y, ZHANG Y F, CHENG J Q, et al. Fluid flow and heat transfer characteristics of liquid cooling microchannels in LTCC multilayered packaging substrate[J]. International Journal of Heat and Mass Transfer, 2015, 84(3): 339-345

    [8]

    LU W, LI J, MIAO J Y, et al. Application of high-thermal-conductivity diamond for space phased array antenna[J]. Functional Diamond, 2021, 1(1): 189-196 DOI: 10.1080/26941112.2021.1996211

    [9] 徐忠华, 马莒生, 耿志挺, 等. 低温共烧陶瓷发展进程及研究热点[J]. 材料导报, 2000, 14(4): 30-33

    XU Z H, MA J S, GENG Z T, et al. History and research focus of low temperature cofired ceramics[J]. Materials Review, 2000, 14(4): 30-33

    [10] 王志勤, 张孔. LTCC互连基板金属化孔工艺研究[J]. 电子与封装, 2014, 14(2): 35-38 DOI: 10.3969/j.issn.1681-1070.2014.02.010

    WANG Z Q, ZHANG K. The research of THT metallization technical on LTCC substrate[J]. Electronics & Packaging, 2014, 14(2): 35-38 DOI: 10.3969/j.issn.1681-1070.2014.02.010

    [11] 余小玲, 李文华, 郭义宣, 等. 不同基板的GaN器件集成模块传热分析及热优化[J]. 电力电子技术, 2016, 50(8): 82-85 DOI: 10.3969/j.issn.1000-100X.2016.08.024

    YU X L, LI W H, GUO Y X, et al. Thermal analysis and optimization of integrated GaN power modules based on different substrate[J]. Power Electronics, 2016, 50(8): 82-85 DOI: 10.3969/j.issn.1000-100X.2016.08.024

    [12] 杨永军, 蔡静. 特殊条件下的温度测量[M]. 北京: 中国计量出版社, 2008: 298-299
    [13] 白明, 崔新雨, 侯延进. 非接触式温度测量方法在微尺度实验中的应用[J]. 科技信息, 2008, 22: 78-80 DOI: 10.3969/j.issn.1001-9960.2008.01.059

    BAI M, CUI X Y, HOU Y J. Application of non-contact temperature measurement in microscale experiment[J]. Science & Technology Information, 2008, 22: 78-80 DOI: 10.3969/j.issn.1001-9960.2008.01.059

    [14] 黄芳, 刘向鑫, 韩俊峰, 等. 非接触式激光测量真空状态下温度的方法[J]. 真空科学与技术学报, 2013, 33(7): 642-646 DOI: 10.3969/j.issn.1672-7126.2013.07.04

    HUANG F, LIU X X, HAN J F, et al. Non-contact temperature measurement by laser technology[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(7): 642-646 DOI: 10.3969/j.issn.1672-7126.2013.07.04

    [15] 赵吉, 吴明岳, 宋鸽, 等. 非接触式红外温度测量装置在真空干燥箱中的测量及应用[J]. 科技创新导报, 2020, 6: 55-56

    ZHAO J, WU M Y, SONG G, et al. Measurement and application of non-contact temperature measuring device in vacuum drying oven[J]. Science and Technology Innovation Herald, 2020, 6: 55-56

    [16]

    ALMEIDA J S. Space simulation: designing update tools for spacecraft thermal vacuum tests[C]//56th International Astronautical Congress. Fukuoka, 2005: 1-8

    [17] 李志信, 过增元. 微细尺度流动与传热尺度效应的物理机制及其应用[C]//中国机械工程学会年会. 深圳, 2003: 151-161
    [18] 林琳. 电热夹持器微尺度结构传热模型及温度场优化研究[D]. 苏州: 苏州大学, 2021: 34-58
    [19] 林琳, 杨国舜, 武灏, 等. 电热夹持器微尺度传热分析与优化设计[J]. 振动、测试与诊断, 2022, 42(3): 462-467

    LIN L, YANG G S, WU H, et al. Analysis on the microscale heat transfer and optimized design of electrothermal microgripper[J]. Journal of Vibration, Measurement & Diagnosis, 2022, 42(3): 462-467

    [20]

    HU X J, JAIN A, GOODSON K E. Investigation of the natural convection boundary condition in micro-fabricated structures[J]. International Journal of Thermal Sciences, 2008, 47: 820-824 DOI: 10.1016/j.ijthermalsci.2007.07.011

    [21]

    PEIRS J, REYNAERTS D, BRUSSEL H V, et al. Scale effects and thermal consideration for micro-acutators[C]//IEEE International Conference on Robotics and Automation. Leuven, 1998: 1516-1521

    [22]

    GUO Z Y, LI Z X. Size effect on microscale single-phase flow and heat transfer[J]. International Journal of Heat and Mass Transfer, 2003, 46: 149-159 DOI: 10.1016/S0017-9310(02)00209-0

    [23] 李娜, 过增元, 李志信. 方腔自然对流中力的尺度效应[J]. 清华大学学报, 2002, 42(11): 1508-1514

    LI N, GUO Z Y, LI Z X. Size effect of forces on natural convection in a square cavity[J]. Journal of Tsinghua University, 2002, 42(11): 1508-1514

    [24] 杨德伟, 黄善波, 林日亿. 微小尺度下自然对流换热特性实验研究[J]. 工程热物理学报, 2006, 27(2): 301-303 DOI: 10.3321/j.issn:0253-231X.2006.02.039

    YANG D W, HUANG S B, LIN R Y. An experiment on micro natural convection heat transfer characters[J]. Journal of Engineering Thermophysics, 2006, 27(2): 301-303 DOI: 10.3321/j.issn:0253-231X.2006.02.039

    [25] 张云芳. 微尺度受热表面自然对流传热数值模拟[D]. 北京: 华北电力大学, 2012: 25-34
    [26] 苗国民. 水中水平热线外自然对流换热特性研究[D]. 天津: 天津大学, 2021: 13-22
    [27] 张文成. 微管外自然对流及振动强化换热特性数值模拟研究[D]. 合肥: 合肥工业大学, 2021: 8-14
    [28]

    ROHSENOW W M, HARTNETT J P, CHO Y I. Handbook of heat transfer[M]. 3rd ed. New York: McGraw-Hill, 1998: 1234-1235

    [29] 钟奇, 潘唯, 王玉莹, 等. 航天器热模型修正技术进展研究[J]. 航天器工程, 2021, 30(1): 64-71

    ZHONG Q, PAN W, WANG Y Y, et al. Survey of spacecraft thermal model correlation technology development[J]. Spacecraft Engineering, 2021, 30(1): 64-71

图(7)  /  表(7)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  13
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-19
  • 修回日期:  2024-10-02
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回