重力梯度仪mK级温度稳定度控制设计及验证

Design and verification of a mK-level temperature fluctuation control system for gravity gradiometer

  • 摘要: 针对某卫星有效载荷之重力梯度仪提出的温度稳定度优于±10 mK/200 s的超高指标要求,提出了构建部件级阻容滤波网络、进行系统级隔热强化设计、高精度多级主动测控温设计以及电缆漏热控制的热控方案。热仿真分析和热平衡试验结果表明,梯度仪组件的温度稳定度优于±8 mK/200 s,满足设计指标要求,验证了该热控设计方法的可行性及有效性,可为其他有高精度高稳定度控温需求的航天器部件热控设计提供参考。

     

    Abstract: Aiming at the ultra-high requirement that the temperature stability of the gravity gradiometer as a satellite payload be better than ±10 mK/200 s, a comprehensive thermal control scheme was proposed including the construction of a component-level resistance-capacitance filtering network, the enhanced design of system-level thermal insulation, the multi-stage high-precision active temperature measurement and control, and the reduction of cable heat leakage. The thermal simulation analysis and thermal balance tests were carried out. It is shown that the temperature stability of the gradiometer components is better than ±8 mK/200 s, which meets the design requirements. The feasibility and effectiveness of this thermal control design method were thus verified. It may provide a reference for the thermal control design of other spacecraft parts with high precision and high stability temperature control requirements.

     

/

返回文章
返回