基于改进粒子群算法的红外灯阵自动优化设计

Automatic optimization design of infrared lamp array based on enhanced particle swarm algorithm

  • 摘要: 为提高航天器热试验用红外灯阵的设计效率、提升灯阵热流分布均匀性,提出一种基于粒子群算法的红外灯阵自动优化设计方法:建立红外灯单灯的热流分布数据库与灯阵位置参数的自动优化设计方法;并通过优化参数的重新选择和优化参数间约束条件的建立,改进传统的粒子群算法以提高设计效率。计算结果表明,相比遗传算法,使用改进粒子群算法进行灯阵优化设计用时缩减82%,而优化所得的热流分布均匀度仅低了0.77%。

     

    Abstract: In order to improve the design efficiency and the heat flux uniformity of the infrared lamp array used for the spacecraft thermal test, this paper proposes an automatic optimization method for the optimal design of the infrared lamp array arrangement based on an improved particle swarm algorithm, with a heat flux distribution database for a single lamp and an automatic optimization design method for the array position parameters. Through reselecting the optimization parameters and set constraints among them, the traditional particle swarm optimization algorithm is improved to enhance the design efficiency. It is shown that compared to the genetic algorithm, the enhanced particle swarm algorithm is highly effective in accelerating the optimization process for the design of the infrared lamp array, with a time reduction of 82%, and a heat flux uniformity reduction of only 0.77%.

     

/

返回文章
返回