弹丸高速碰撞过程中靶面三维面形数据获取方法

Method for acquiring 3D shape data of target face in simulated hypervelocity impact

  • 摘要: 文章利用二级轻气炮作为高速碰撞弹丸的加载设备,结合基于傅里叶变换轮廓术的结构光三维测量方案实现高速碰撞过程三维面形数据的获取。系统由柯拉照明条纹投影部分和记录形变相位调制信息的百万帧频光电相机组成,根据所标定的相位高度映射参数和高速采集图像的相位分析数据计算出不同时刻穿甲靶面的三维坐标值。实验结果表明,该方法可实现2.976 km/s高速碰撞实验靶面几何变形的三维数据测量,能够为航天器防护结构设计及爆轰穿甲特性分析提供真实三维几何尺寸数据。

     

    Abstract: In this paper, the 3D shape data of high-speed impact process are acquired with the proposed 3D measurement system, which takes the two-stage light gas gun as the loading equipment for high-speed impact projectile, and adopts the structural light projection approach of Fourier transform profilometry. The system consists of a fringe projection part of the designed Kola illumination system, and a high-speed photoelectric camera with a million-level frame rate for recording the modulated phase information reflecting the shape deformation. The 3D coordinates of the armor pierced target surface are calculated from the calibrated phase height mapping parameters and the analyzed phase data of the high-speed captured images for different times. The experimental results show that with this method, the 3D geometric deformation in the hypervelocity impact experiment with a bullet speed up to 2.976 km/s can be measured, to provide real 3D geometric data for the design of spacecraft protective structures and the analysis of detonation & armor piercing characteristics.

     

/

返回文章
返回