《万方数据-数字化期刊群》全文上网期刊
CNKI《中国学术期刊(网络版)》全文收录期刊
《中文科技期刊数据库》(维普网)全文收录期刊
超星期刊域出版平台、博看网全文收录期刊
日本科学技术振兴机构数据库收录

航天器冲击防护用热塑性仿生复合材料的弯曲性能研究

陈昊宇, 殷莎, 胡建星, 张品亮, 龚自正, 许骏

陈昊宇, 殷莎, 胡建星, 等. 航天器冲击防护用热塑性仿生复合材料的弯曲性能研究[J]. 航天器环境工程, 2019, 36(2): 151-155 DOI: 10.12126/see.2019.02.008
引用本文: 陈昊宇, 殷莎, 胡建星, 等. 航天器冲击防护用热塑性仿生复合材料的弯曲性能研究[J]. 航天器环境工程, 2019, 36(2): 151-155 DOI: 10.12126/see.2019.02.008
CHEN H Y, YIN S, HU J X, et al. Bending properties of thermoplastic bioinspired helicoidal laminated composites used in impact protection of spacecraft[J]. Spacecraft Environment Engineering, 2019, 36(2): 151-155 . DOI: 10.12126/see.2019.02.008
Citation: CHEN H Y, YIN S, HU J X, et al. Bending properties of thermoplastic bioinspired helicoidal laminated composites used in impact protection of spacecraft[J]. Spacecraft Environment Engineering, 2019, 36(2): 151-155 . DOI: 10.12126/see.2019.02.008

航天器冲击防护用热塑性仿生复合材料的弯曲性能研究

基金项目: 北京卫星环境工程研究所创新基金项目(编号:CAST-BISEE 2017-021)
详细信息
    作者简介:

    陈昊宇(1995—),男,硕士研究生,研究方向为车用轻量化材料。E-mail: haoyuchen@buaa.edu.cn

    通讯作者:

    许   骏(1983—),男,博士学位,教授,研究方向为冲击动力学。E-mail: junxu@buaa.edu.cn

  • 中图分类号: TB33; TB303; V524.3

Bending properties of thermoplastic bioinspired helicoidal laminated composites used in impact protection of spacecraft

  • 摘要: 模仿自然界中甲壳类动物外骨骼内的螺旋铺层微结构,采用3D打印制备得到螺旋铺层仿生复合材料,分析其在三点弯曲载荷下的力学性能并与工程中常见的准各向同性复合材料进行对比。实验结果显示:仿生复合材料的弯曲性能及失效形式明显区别于传统铺层方案,在弯曲载荷下不易产生分层,结构可在受损伤条件下较长阶段内保持一定的承载能力。结合裂纹扩展过程中对裂纹形貌的显微观察,进一步揭示了该仿生复合材料强韧性的机理。研究结果可为该种仿生复合材料的工程应用提供参考。
    Abstract: In this paper, a kind of helicoidal laminated bio-inspired composite is designed by imitating the microstructure of the exoskeleton of some crustaceans in nature, and then fabricated by the 3-D printing. The mechanical properties of the biomimetic composite material under three-point-bending conditions are analyzed and compared with those of the traditional laminated composites. The experimental results show that the failure modes of the helicoidal laminated composite materials are quite different from those made under the traditional laminating schemes and the delamination does not tend to occur under the bending loads for the helicoidal laminates, which means that the helicoidal laminating structure can maintain an adequate bearing capacity for a long period of time in the damage evolution. The mechanism of the high toughness of the bio-inspired composites is revealed by analyzing the crack propagation process based on the microscopic observation of the crack morphology. The results may provide some reference for the engineering application of this kind of bio-inspired composite materials.
  • 图  1   热塑性3D打印制备复合材料原理

    Figure  1.   Scheme of thermoplastic composite 3D printing

    图  2   三点弯实验设备和试样

    Figure  2.   Three-point-bending testing equipment and sample

    图  3   准各向同性铺层方案三点弯实验结果

    Figure  3.   Quasi-isotropic laminating sequence samples

    图  4   螺旋铺层方案三点弯实验结果

    Figure  4.   Helicoidal laminating sequence samples

    表  1   2种铺层方案的刚度矩阵

    Table  1   Stiffness matrix of two laminating sequences

    刚度矩阵准各向同性铺层螺旋铺层
    面内刚度矩阵
    A
    ${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{{5.39}} \times {{{10}}^4}}&{{{1.55}} \times {{{10}}^4}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{{1.55}} \times {{{10}}^4}}&{{{5.39}} \times {{{10}}^4}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{{1.92}} \times {{{10}}^4}} \!\!\!\!\! \end{array}} \right]}$${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{{5.72}} \times {{{10}}^4}}&{{{1.49}} \times {{{10}}^4}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{{1.49}} \times {{{10}}^4}}&{{{5.17}} \times {{{10}}^4}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{{1.87}} \times {{{10}}^4}} \!\!\!\!\! \end{array}} \right]}$
    耦合刚度矩阵
    B
    ${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \end{array}} \right]}$${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \end{array}} \right]}$
    弯曲刚度矩阵
    D
    ${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{{4.50}} \times {{{10}}^5}}&{{{1.15}} \times {{{10}}^4}}&{{{7.46}} \times {{{10}}^2}} \!\!\!\!\! \\\!\!\!\!\! {{{1.15}} \times {{{10}}^4}}&{{{3.21}} \times {{{10}}^4}}&{{{7.46}} \times {{{10}}^2}} \!\!\!\!\! \\\!\!\!\!\! {{{7.46}} \times {{{10}}^2}}&{{{7.46}} \times {{{10}}^2}}&{{{1.43}} \times {{{10}}^4}} \!\!\!\!\! \end{array}} \right]}$${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{{4.69}} \times {{{10}}^4}}&{{{1.09}} \times {{{10}}^4}}&{{{5.55}} \times {{{10}}^3}} \!\!\!\!\! \\\!\!\!\!\! {{{1.09}} \times {{{10}}^4}}&{{{3.55}} \times {{{10}}^4}}&{{{3.75}} \times {{{10}}^3}} \!\!\!\!\! \\\!\!\!\!\! {{{5.55}} \times {{{10}}^3}}&{{{3.75}} \times {{{10}}^3}}&{{{1.36}} \times {{{10}}^4}} \!\!\!\!\! \end{array}} \right]}$
    下载: 导出CSV

    表  2   2种铺层方案的弯曲载荷下力学性能对比

    Table  2   Comparison of flexural mechanical properties of two laminating sequences

    性能准各向同性铺层螺旋铺层
    弯曲刚度/GPa 17.24±0.12 20.39±0.13
    弯曲强度/MPa317.99±9.06286.81±8.51
    失效位移/mm 5.92±1.05 23.89±3.17
    下载: 导出CSV
  • [1] 于翘. 复合材料在航天领域发展的新动向[C]//中国复合材料学会2003年复合材料学术年会论文集, 2003: 24-27
    [2] 龚自正, 韩增尧, 庞宝君. 空间碎片防护研究现状与国内发展建议[J]. 航天器环境工程, 2010, 27(1): 24-31 DOI: 10.3969/j.issn.1673-1379.2010.01.004

    GONG Z Z, HAN Z Z, PANG B J. Research status and domestic development proposals of space debris protection[J]. Spacecraft Environment Engineering, 2010, 27(1): 24-31 DOI: 10.3969/j.issn.1673-1379.2010.01.004

    [3] 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011(2): 44-47 DOI: 10.3969/j.issn.1003-6423.2011.02.011

    WANG X G, YU Y, LI S M, et al. Application of advanced thermoplastic resin matrix composites in aerospace[J]. Fiber Composites, 2011(2): 44-47 DOI: 10.3969/j.issn.1003-6423.2011.02.011

    [4]

    GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomater, 2014, 10(9): 3997-4008 DOI: 10.1016/j.actbio.2014.03.022

    [5]

    RIBBANS B, LI Y, TAN T. A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures[J]. J Mech Behav Biomed Mater, 2016, 56: 57-67 DOI: 10.1016/j.jmbbm.2015.11.004

    [6]

    YARAGHI N A, GUARIN-ZAPATA N, GRUNENFELDER L K, et al. A Sinusoidally architected helicoidal biocomposite[J]. Adv Mater, 2016, 28: 6835-6844 DOI: 10.1002/adma.201600786

    [7]

    CHENG L, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 211-220 DOI: 10.1016/j.compositesa.2010.11.009

    [8]

    WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer[J]. Science, 2012, 336(6086): 1275-1280 DOI: 10.1126/science.1218764

    [9]

    SUKSANGPANYA N, YARAGHI N A, KISAILUS D, et al. Twisting cracks in Bouligand structures[J]. J Mech Behav Biomed Mater, 2017, 76: 38-57 DOI: 10.1016/j.jmbbm.2017.06.010

    [10]

    SHANG J S, NGERN N H H, TAN V B C. Crustacean-inspired helicoidal laminates[J]. Composites Science and Technology, 2016, 128: 222-232 DOI: 10.1016/j.compscitech.2016.04.007

    [11]

    LIU J L, LEE H P, TAN V B C, et al. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 165: 282-289 DOI: 10.1016/j.compscitech.2018.07.017

    [12]

    LIU J L, LEE H P, TAN V B C. Failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 157: 99-106 DOI: 10.1016/j.compscitech.2018.01.033

    [13]

    BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: a review[J]. Additive Manufacturing, 2018, 21: 1-16 DOI: 10.1016/j.addma.2018.01.002

    [14]

    ASTM International. Standard test method for flexural properties of polymer matrix composite materials: ASTM-D7264/D7264M-15[S], 2015: 1-10

    [15]

    GINZBURG D, PINTO F, IERVOLINO O, et al. Damage tolerance of bio-inspired helicoidal composites under low velocity impact[J]. Composite Structures, 2017, 161: 187-203 DOI: 10.1016/j.compstruct.2016.10.097

图(4)  /  表(2)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  169
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-30
  • 修回日期:  2019-03-13
  • 发布日期:  2019-04-24

目录

    /

    返回文章
    返回