Bending properties of thermoplastic bioinspired helicoidal laminated composites used in impact protection of spacecraft
-
摘要: 模仿自然界中甲壳类动物外骨骼内的螺旋铺层微结构,采用3D打印制备得到螺旋铺层仿生复合材料,分析其在三点弯曲载荷下的力学性能并与工程中常见的准各向同性复合材料进行对比。实验结果显示:仿生复合材料的弯曲性能及失效形式明显区别于传统铺层方案,在弯曲载荷下不易产生分层,结构可在受损伤条件下较长阶段内保持一定的承载能力。结合裂纹扩展过程中对裂纹形貌的显微观察,进一步揭示了该仿生复合材料强韧性的机理。研究结果可为该种仿生复合材料的工程应用提供参考。Abstract: In this paper, a kind of helicoidal laminated bio-inspired composite is designed by imitating the microstructure of the exoskeleton of some crustaceans in nature, and then fabricated by the 3-D printing. The mechanical properties of the biomimetic composite material under three-point-bending conditions are analyzed and compared with those of the traditional laminated composites. The experimental results show that the failure modes of the helicoidal laminated composite materials are quite different from those made under the traditional laminating schemes and the delamination does not tend to occur under the bending loads for the helicoidal laminates, which means that the helicoidal laminating structure can maintain an adequate bearing capacity for a long period of time in the damage evolution. The mechanism of the high toughness of the bio-inspired composites is revealed by analyzing the crack propagation process based on the microscopic observation of the crack morphology. The results may provide some reference for the engineering application of this kind of bio-inspired composite materials.
-
Keywords:
- bio-inspired composites /
- crashworthiness /
- delamination /
- toughness
-
-
表 1 2种铺层方案的刚度矩阵
Table 1 Stiffness matrix of two laminating sequences
刚度矩阵 准各向同性铺层 螺旋铺层 面内刚度矩阵
A${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{{5.39}} \times {{{10}}^4}}&{{{1.55}} \times {{{10}}^4}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{{1.55}} \times {{{10}}^4}}&{{{5.39}} \times {{{10}}^4}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{{1.92}} \times {{{10}}^4}} \!\!\!\!\! \end{array}} \right]}$ ${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{{5.72}} \times {{{10}}^4}}&{{{1.49}} \times {{{10}}^4}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{{1.49}} \times {{{10}}^4}}&{{{5.17}} \times {{{10}}^4}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{{1.87}} \times {{{10}}^4}} \!\!\!\!\! \end{array}} \right]}$ 耦合刚度矩阵
B${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \end{array}} \right]}$ ${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \\\!\!\!\!\! {{0}}&{{0}}&{{0}} \!\!\!\!\! \end{array}} \right]}$ 弯曲刚度矩阵
D${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{{4.50}} \times {{{10}}^5}}&{{{1.15}} \times {{{10}}^4}}&{{{7.46}} \times {{{10}}^2}} \!\!\!\!\! \\\!\!\!\!\! {{{1.15}} \times {{{10}}^4}}&{{{3.21}} \times {{{10}}^4}}&{{{7.46}} \times {{{10}}^2}} \!\!\!\!\! \\\!\!\!\!\! {{{7.46}} \times {{{10}}^2}}&{{{7.46}} \times {{{10}}^2}}&{{{1.43}} \times {{{10}}^4}} \!\!\!\!\! \end{array}} \right]}$ ${\left[ {\begin{array}{*{20}{c}}\!\!\!\!\! {{{4.69}} \times {{{10}}^4}}&{{{1.09}} \times {{{10}}^4}}&{{{5.55}} \times {{{10}}^3}} \!\!\!\!\! \\\!\!\!\!\! {{{1.09}} \times {{{10}}^4}}&{{{3.55}} \times {{{10}}^4}}&{{{3.75}} \times {{{10}}^3}} \!\!\!\!\! \\\!\!\!\!\! {{{5.55}} \times {{{10}}^3}}&{{{3.75}} \times {{{10}}^3}}&{{{1.36}} \times {{{10}}^4}} \!\!\!\!\! \end{array}} \right]}$ 表 2 2种铺层方案的弯曲载荷下力学性能对比
Table 2 Comparison of flexural mechanical properties of two laminating sequences
性能 准各向同性铺层 螺旋铺层 弯曲刚度/GPa 17.24±0.12 20.39±0.13 弯曲强度/MPa 317.99±9.06 286.81±8.51 失效位移/mm 5.92±1.05 23.89±3.17 -
[1] 于翘. 复合材料在航天领域发展的新动向[C]//中国复合材料学会2003年复合材料学术年会论文集, 2003: 24-27 [2] 龚自正, 韩增尧, 庞宝君. 空间碎片防护研究现状与国内发展建议[J]. 航天器环境工程, 2010, 27(1): 24-31 DOI: 10.3969/j.issn.1673-1379.2010.01.004 GONG Z Z, HAN Z Z, PANG B J. Research status and domestic development proposals of space debris protection[J]. Spacecraft Environment Engineering, 2010, 27(1): 24-31 DOI: 10.3969/j.issn.1673-1379.2010.01.004
[3] 王兴刚, 于洋, 李树茂, 等. 先进热塑性树脂基复合材料在航天航空上的应用[J]. 纤维复合材料, 2011(2): 44-47 DOI: 10.3969/j.issn.1003-6423.2011.02.011 WANG X G, YU Y, LI S M, et al. Application of advanced thermoplastic resin matrix composites in aerospace[J]. Fiber Composites, 2011(2): 44-47 DOI: 10.3969/j.issn.1003-6423.2011.02.011
[4] GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomater, 2014, 10(9): 3997-4008 DOI: 10.1016/j.actbio.2014.03.022
[5] RIBBANS B, LI Y, TAN T. A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures[J]. J Mech Behav Biomed Mater, 2016, 56: 57-67 DOI: 10.1016/j.jmbbm.2015.11.004
[6] YARAGHI N A, GUARIN-ZAPATA N, GRUNENFELDER L K, et al. A Sinusoidally architected helicoidal biocomposite[J]. Adv Mater, 2016, 28: 6835-6844 DOI: 10.1002/adma.201600786
[7] CHENG L, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 211-220 DOI: 10.1016/j.compositesa.2010.11.009
[8] WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer[J]. Science, 2012, 336(6086): 1275-1280 DOI: 10.1126/science.1218764
[9] SUKSANGPANYA N, YARAGHI N A, KISAILUS D, et al. Twisting cracks in Bouligand structures[J]. J Mech Behav Biomed Mater, 2017, 76: 38-57 DOI: 10.1016/j.jmbbm.2017.06.010
[10] SHANG J S, NGERN N H H, TAN V B C. Crustacean-inspired helicoidal laminates[J]. Composites Science and Technology, 2016, 128: 222-232 DOI: 10.1016/j.compscitech.2016.04.007
[11] LIU J L, LEE H P, TAN V B C, et al. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 165: 282-289 DOI: 10.1016/j.compscitech.2018.07.017
[12] LIU J L, LEE H P, TAN V B C. Failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 157: 99-106 DOI: 10.1016/j.compscitech.2018.01.033
[13] BRENKEN B, BAROCIO E, FAVALORO A, et al. Fused filament fabrication of fiber-reinforced polymers: a review[J]. Additive Manufacturing, 2018, 21: 1-16 DOI: 10.1016/j.addma.2018.01.002
[14] ASTM International. Standard test method for flexural properties of polymer matrix composite materials: ASTM-D7264/D7264M-15[S], 2015: 1-10
[15] GINZBURG D, PINTO F, IERVOLINO O, et al. Damage tolerance of bio-inspired helicoidal composites under low velocity impact[J]. Composite Structures, 2017, 161: 187-203 DOI: 10.1016/j.compstruct.2016.10.097