《万方数据-数字化期刊群》全文上网期刊
CNKI《中国学术期刊(网络版)》全文收录期刊
《中文科技期刊数据库》(维普网)全文收录期刊
超星期刊域出版平台、博看网全文收录期刊
日本科学技术振兴机构数据库收录

微尺度质谱仪离子源结构设计及离子光学系统仿真

张浩, 窦仁超, 刘坤, 孟冬辉, 巴德纯, 杜广煜, 巴要帅, 孙立臣, 闫荣鑫

张浩, 窦仁超, 刘坤, 等. 微尺度质谱仪离子源结构设计及离子光学系统仿真[J]. 航天器环境工程, 2019, 36(1): 83-88 DOI: 10.12126/see.2019.01.013
引用本文: 张浩, 窦仁超, 刘坤, 等. 微尺度质谱仪离子源结构设计及离子光学系统仿真[J]. 航天器环境工程, 2019, 36(1): 83-88 DOI: 10.12126/see.2019.01.013
ZHANG H, DOU R C, LIU K, et al. Structural design and optical system simulation of ion source for microscale mass spectrometer[J]. Spacecraft Environment Engineering, 2019, 36(1): 83-88. DOI: 10.12126/see.2019.01.013
Citation: ZHANG H, DOU R C, LIU K, et al. Structural design and optical system simulation of ion source for microscale mass spectrometer[J]. Spacecraft Environment Engineering, 2019, 36(1): 83-88. DOI: 10.12126/see.2019.01.013

微尺度质谱仪离子源结构设计及离子光学系统仿真

基金项目: 教育部中央高校基本科研业务费项目(编号:N160302001, N170308028);北京卫星环境工程研究所基金项目(编号:CAST-BISEE2017-011)
详细信息
    作者简介:

    张 浩(1995—),男,硕士研究生,主要从事微纳质谱方面研究。E-mail: 15998257665@163.com

    通讯作者:

    刘 坤(1979—),男,教授,博士生导师,主要研究方向为微纳流动与微纳芯片应用,真空干泵与制造测试工艺;E-mail: kliu@mail.neu.edu.cn

    孟冬辉(1978—),男,硕士学位,研究员,从事航天器相关真空与检漏技术研究工作;E-mail: mengdonghui@126.com

  • 中图分类号: V447+.1

Structural design and optical system simulation of ion source for microscale mass spectrometer

  • 摘要: 文章针对多领域对便携式质谱仪的需求,对微尺度质谱仪的核心部件离子源进行结构设计,并利用离子光学模拟软件SIMION进行仿真,探究电极电压、透镜结构、电极结构等对离子传输的影响并进行优化,获取相关参数研究规律,为微尺度质谱仪的研制提供设计依据。
    Abstract: In view of the demand of the portable mass spectrometer in many fields, the structure of the ion source, as the core functional component of the microscale mass spectrometers, is designed, and its ion optical system is simulated by the software SIMION. The effect of the electrode voltage, the lens structure, and the electrode structure on the ion width and the divergence angle are investigated and optimized. The related parameters obtained may provide a basis for the development of microscale mass spectrometers.
  • 图  1   质谱仪进样系统示意

    Figure  1.   Injection system of the mass spectrometer

    图  2   离子源结构

    Figure  2.   Structure of the ion source

    图  3   双透镜离子源结构

    Figure  3.   Schematic diagram of double lens ion source

    图  4   传统离子源结构

    Figure  4.   Traditional ion source structure

    图  5   离子源SIMION模型

    Figure  5.   SIMION model of the ion source

    图  6   引出极、聚焦极电压对离子束宽影响

    Figure  6.   Effect of voltage of extraction electrode and focusing electrode on ion beam width

    图  7   不同引出极、聚焦极电压下末端电极处离子束散角情况

    Figure  7.   Ion beam divergence angle at the end electrode

    图  8   带有聚焦透镜的离子源

    Figure  8.   Ion source with different focusing lens

    图  9   不同聚焦透镜下末端电极处离子束散角情况

    Figure  9.   Ion beam divergence angle at the end electrode for different focusing lens

    图  10   电极间距对离子束宽的影响

    Figure  10.   Effect of electrode distance on ion beam width

    图  11   不同电极间距下末端电极处离子束散角情况

    Figure  11.   Ion beam divergence angle at the end electrode for different electrod distances

    图  12   电离室出口宽度及电极开口宽度对离子束宽影响

    Figure  12.   Effect of ionization chamber and electrode opening width on ion beam width

    图  13   不同电离室出口宽度下的离子束散角情况

    Figure  13.   Ion beam divergence angle at the end electrode for ionization chamber opening width

    表  1   不同聚焦电极对离子束宽的影响

    Table  1   Effect of different focusing electrodes on ion beam width

    离子源类型 离子束宽/mm
    传统离子源 0.141 2
    单透镜离子源 0.118 2
    五级单透镜离子源 0.096 9
    下载: 导出CSV
  • [1]

    SNYDER D T, PULLIAM C J, OUYANG Z, et al. Miniature and fieldable mass spectrometers: recent advances[J]. Analytical Chemistry, 2016, 88(1): 2 DOI: 10.1021/acs.analchem.5b03070

    [2]

    SYMS R R A, WRIGHT S. MEMS mass spectrometers: the next wave of miniaturization[J]. Journal of Micromechanics & Microengineering, 2015, 26(2): 023001

    [3]

    LEBEDEV A T. Environmental mass spectrometry[J]. Analytical Chemistry, 2013, 6(18): 163-189

    [4]

    PALMER P T, LIMERO T F. Mass spectrometry in the US space program: past, present, and future[J]. Journal of the American Society for Mass Spectrometry, 2001, 12(6): 656-675 DOI: 10.1016/S1044-0305(01)00249-5

    [5]

    GIANNOUKOS S, BRKIĆ B, TAYLOR S, et al. Membrane inlet mass spectrometry for homeland security and forensic applications[J]. Journal of the American Society for Mass Spectrometry, 2015, 26(2): 231-239 DOI: 10.1007/s13361-014-1032-7

    [6]

    BLAIN M G, RITER L S, CRUZ D, et al. Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps[J]. Int J Mass Spectrum, 2004, 236: 91-104 DOI: 10.1016/j.ijms.2004.06.011

    [7]

    CHAUDHARY A, AMEROM F H W V, SHORT R T. Development of microfabricated cylindrical ion trap mass spectrometer arrays[J]. Journal of Microelectromechanical Systems, 2009, 18(2): 442-448 DOI: 10.1109/JMEMS.2009.2013390

    [8]

    CHEUNG K, VELASQUEZ-GARCIA L F, AKINWANDE A I. High-performance MEMS square electrode quadrupole mass filters for chip-scale mass spectrometry[C]//IEEE International Conference on Micro Electro Mechanical Systems, 2010: 867-870

    [9]

    HAN K, LEE Y, JUN D, et al. Field emission ion source using a carbon nanotube array for micro time-of-flight mass spectrometer[J]. Japanese Journal of Applied Physics, 2013, 50(6): 345-359

    [10]

    TASSETTI C M, DURAFFOURG L, DANEL J S, et al. A MEMS electron impact ion source integrated in a micro-time-of-flight mass spectrometer[J]. Procedia Engineering, 2012, 47: 538-541 DOI: 10.1016/j.proeng.2012.09.203

    [11]

    VIGNE S, ALAVA T, TASSETTI C M, et al. Optimization of an electron impact ion source on a MEMS time-of-flight mass spectrometer[J]. Sensors & Actuators (B): Chemical, 2017, 243: 690-695

    [12]

    SILLON N, BAPTIST R. Micromachined mass spectrometer[J]. Sensors & Actuators (B): Chemical, 2002, 83(1/2/3): 129-137

    [13] 郭美如, 张伟文, 李得天, 等. 空间小型磁偏转质谱计的研制[J]. 真空科学与技术学报, 2015, 35(4): 381-385

    GUO M R, ZHANG W W, LI D T, et al. Development of miniaturized magnetic sector mass spectrometer for space exploration[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(4): 381-385

    [14]

    WANG J, ZHANG X, MAO F, et al. Study of a micro chamber quadrupole mass spectrometer[J]. Journal of Vacuum Science & Technology (A): Vacuum Surfaces & Films, 2008, 26(2): 239-243

    [15]

    HE M, XUE Z, ZHANG Y, et al. Development and characterizations of a miniature capillary electrophoresis mass spectrometry system[J]. Analytical Chemistry, 2015, 87(4): 2236-2241 DOI: 10.1021/ac504868w

    [16]

    GAHL D A. SIMION 3D[G]. Version 6.0, 1995

    [17] 季欧. 质谱分析法[M]. 北京: 原子能出版社, 1978
    [18] 朱一心, 曹麟刚. 用于聚焦微离子束装置的静电透镜系统的设计分析[J]. 微细加工技术, 1986(3): 35-39

    ZHU Y X, CAO L G. Design analysis of electrostatic lens system for focusing micro ion beam devices[J]. Microfabrication Technology, 1986(3): 35-39

  • 期刊类型引用(5)

    1. 杨丽娜,熊行创,刘子龙,方向. EI源的离子光学数字模拟系统开发与研究. 质谱学报. 2025(01): 88-96 . 百度学术
    2. 窦仁超,崔寓淏,喻新发,冯琪,刘坤,闫荣鑫,孙立臣,孟冬辉. 一种空间微型质谱仪的芯片级离子源研究. 真空. 2024(02): 42-46 . 百度学术
    3. 郭琦,韩琰,袁翠平,孙伟,孙立臣,孟冬辉,闫荣鑫. 可实现大质量数检测的四极杆质谱计的关键参数设计及仿真研究. 真空科学与技术学报. 2024(12): 1059-1066 . 百度学术
    4. 张棋,王国栋,王进伟,林云龙,伊明辉,李涛,唐振宇. 小型离子源中膜孔静电透镜系统仿真研究. 真空科学与技术学报. 2021(01): 35-39 . 百度学术
    5. 谢天意,谢元华,窦仁超,孟冬辉,刘坤,巴德纯,孙立臣,闫荣鑫. 径向微型分子泵结构设计及抽气性能仿真. 航天器环境工程. 2021(01): 25-30 . 本站查看

    其他类型引用(6)

图(13)  /  表(1)
计量
  • 文章访问数:  661
  • HTML全文浏览量:  147
  • PDF下载量:  48
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-11-08
  • 修回日期:  2019-01-27
  • 网络出版日期:  2019-02-01
  • 发布日期:  2019-03-01

目录

    /

    返回文章
    返回