《万方数据-数字化期刊群》全文上网期刊
CNKI《中国学术期刊(网络版)》全文收录期刊
《中文科技期刊数据库》(维普网)全文收录期刊
超星期刊域出版平台、博看网全文收录期刊
日本科学技术振兴机构数据库收录

基于小波包变换及相关系数法的复合材料层合板冲击位置识别研究

郭松1, 何顶顶2

郭松1, 何顶顶2. 基于小波包变换及相关系数法的复合材料层合板冲击位置识别研究[J]. 航天器环境工程, 2017, 34(5): 464-470 DOI: 10.12126/see.2017.05.002
引用本文: 郭松1, 何顶顶2. 基于小波包变换及相关系数法的复合材料层合板冲击位置识别研究[J]. 航天器环境工程, 2017, 34(5): 464-470 DOI: 10.12126/see.2017.05.002
GUO Song1,. The impact location identification of composite laminate based on wavelet packet transform and correlation coefficient method[J]. Spacecraft Environment Engineering, 2017, 34(5): 464-470. DOI: 10.12126/see.2017.05.002
Citation: GUO Song1,. The impact location identification of composite laminate based on wavelet packet transform and correlation coefficient method[J]. Spacecraft Environment Engineering, 2017, 34(5): 464-470. DOI: 10.12126/see.2017.05.002

基于小波包变换及相关系数法的复合材料层合板冲击位置识别研究

基金项目: 

国家自然科学基金资助项目"热声振多场耦合环境结构全频段响应预示方法研究"(编号:11572086)

详细信息
  • 中图分类号: TN818

The impact location identification of composite laminate based on wavelet packet transform and correlation coefficient method

  • 摘要: 复合材料较为广泛应用于航空、航天等工程领域,但对冲击载荷十分敏感。因此,对复合材料结构承受的冲击载荷进行在线监测以及冲击位置的实时识别具有重要意义。文章以复合材料层合板为研究对象,基于两个冲击位置的距离越靠近则接收到信号幅频特性相似度越高的特点,采用FBG光纤光栅传感器,通过小波包变换的方法来提取能量特征向量,同时结合相关系数法来实现复合材料层合板的冲击位置识别。在480 mm×480 mm的复合材料层合板上开展冲击实验,8次实验皆完成了冲击位置识别,其中7个点距离误差为0 mm,实现精准识别,另一个点误差在6%以内。
    Abstract: Composite materials are widely used in aviation, aerospace and other engineering fields. However, composite materials are very sensitive to the impact load. In order to improve the accuracy of the impact localization identification in composite structures in real-time, it is necessary to carry out the online structural health monitoring for the impact load on composite structures. In this paper, for the composite laminate, based on the fact that the closer the two impact positions, the higher the similarity of the received signal's amplitude-frequency characteristics. The method of the wavelet packet transform is used to extract the energy feature vector through the Fiber Bragg Grating (FBG) sensor. The correlation coefficient method is used for the impact localization identification of the composite laminate. Eight impact location identification experiments are carried out for the 480 mm×480 mm composite laminate. The localization error is zero for seven of them; and the percentage error is not more than 6% for the other one.
  • [1] 唐见茂. 航空航天复合材料发展现状及前景[J]. 航天器环境工程, 2013, 30(4):352-359 TANG J M. Current status and trends of advanced composites in aerospace[J]. Spacecraft Environment Engineering, 2013, 30(4):352-359
    [2]

    TSUDA H, LEE J R. Strain and damage monitoring of CFRP in impact loading using a fiber Bragg grating sensor system[J]. Composites Science and Technology, 2007, 67(7):1353-1361

    [3] 沈真, 杨胜春, 陈普会. 复合材料抗冲击性能和结构压缩设计许用值[J]. 航空学报, 2007, 28(3):561-566 SHEN Z, YANG S C, CHEN P H. Behaviors of composite materials to withstand impact and structural compressive design allowableness[J]. Acta Aeronautica ET Asronautica Sinica, 2007, 28(3):561-566
    [4]

    CHAMBERS A R, MOWLEM M C, DOKOS L. Evaluating impact damage in CFRP using optical fibre sensors[J]. Composites Science and Technology, 2007, 67(6):1235-1242

    [5] 周洁敏. 子波分析和ART神经网络在复合材料板冲击中的应用[J]. 航空学报, 2001, 22(1):94-96 ZHOU J M. Application of wavelet analysis and art neural networks in smashing location detection of composite material structure[J]. Acta Aeronautica ET Asronautica Sinica, 2001, 22(1):94-96
    [6] 林智育, 许希武. 复合材料层板低速冲击后剩余压缩强度[J]. 复合材料学报, 2008, 25(1):140-146 LIN Z Y, XU X W. Residual compressive strength of composite laminates after low-velocity impact[J]. Acta Materiae Compositae Sinica, 2008, 25(1):140-146
    [7]

    KUNDU T, DAS S, MARTIN S A, et al. Locating point of impact in anisotropic fiber reinforced composite plates[J]. Ultrasonics, 2008, 48(3):193-201

    [8]

    PARK C Y, KIM J H, JUN S M, et al. Localizations and force reconstruction of low-velocity impact in a composite panel using optical fiber sensors[J]. Advanced Composite Materials, 2012, 21(5/6):357-369

    [9] 苏永振, 袁慎芳, 王瑜. 基于多重信号分类算法的复合材料冲击定位[J]. 复合材料学报, 2010, 27(3):105-110 SU Y Z, YUAN S F, WANG Y. Impact localization in composite using multiple signal classification method[J]. Acta Materiae Compositae Sinica, 2010, 27(3):105-110
    [10] 钟永腾, 袁慎芳, 邱雷. 基于梅花阵列的复合材料全方位冲击定位方法[J]. 复合材料学报, 2014, 31(5):1369-1374 ZHONG Y T, YUAN S F, QIU L. Omni-directional impact localization method on composite structure using plum blossom array[J]. Acta Materiae Compositae Sinica, 2014, 31(5):1369-1374
    [11] 徐颖娣, 袁慎芳, 彭鸽. 二维结构损伤的主动Lamb波定位技术研究[J]. 航空学报, 2004, 25(5):476-479 XU Y D, YUAN S F, PENG G. Study on two-dimensional damage location in structure based on active Lamb wave detection technique[J]. Acta Aeronautica ET Astronautica Sinica, 2004, 25(5):476-479
    [12]

    SHRESTHA P, KIM J H, PARK Y, et al. Impact localization on composite wing using 1D array FBG sensor and RMS/correlation based reference database algorithm[J]. Composite Structures, 2015, 125:159-169

    [13] 芦吉云, 王帮峰, 梁大开. 基于小波包特征提取及支持向量回归机的光纤布拉格光栅冲击定位系统[J]. 光学精密工程, 2012, 20(4):712-718 LU J Y, WANG B F, LIANG D K. Identification of impact location by using FBG based on wavelet packet feature extraction and SVR[J]. Optics and Precision Engineering, 2012, 20(4):712-718
    [14] 王彦, 梁大开, 周兵. 光纤光栅型智能结构损伤识别的小波包分析[J]. 光学精密工程, 2007, 15(11):1731-1737 WANG Y, LIANG D K, ZHOU B. Damage diagnosis for optical fiber grating smart structure based on wavelet packet analysis[J]. Optics and Precision Engineering, 2007, 15(11):1731-1737
    [15] 凌同华, 廖艳程, 张胜. 冲击荷载下岩石声发射信号能量特征的小波包分析[J]. 振动与冲击, 2010, 29(10):127-130 LING T H, LIAO Y C, ZHANG S. Application of wavelet packet method in frequency band energy distribution of rock acoustic emission signals under impact loading[J]. Journal of Vibration and Shock, 2010, 29(10):127-130
    [16] 路士增, 姜明顺, 隋青美. 基于数据模板匹配算法的FBG冲击定位系统[J]. 光电子激光, 2014(2):305-310 LU S Z, JIANG M S, SUI Q M, et al. An impact location method using FBG sensing based on data template matching algorithm[J]. Journal of Optoelectronics Laser, 2014(2):305-310
    [17] 王利恒. 基于应变信号的复合材料层合板低速冲击损伤识别研究[J]. 工程力学, 2014, 31(2):230-236 WANG L H. Low velocity impact damage identification of composite laminate using dynamic strain signals[J]. Engineering Mechanics, 2014, 31(2):230-236
    [18] 杨斌, 章继峰, 周利民. 玻璃纤维-碳纤维混杂增强PCBT复合材料层合板的制备及低速冲击性能[J]. 复合材料学报, 2015, 32(2):435-443 YANG B, ZHANG J F, ZHOU L M. Preparation and low-velocity impact properties of glass fiber-carbon fiber hybrid reinforced PCBT composite laminate[J]. Acta Materiae Compositae Sinica, 2015, 32(2):435-443
    [19] 顾国庆, 王开福. 复合材料层合板低速冲击损伤激光散斑干涉无损检测研究[J]. 应用激光, 2012, 32(6):527-531 GU G Q, WANG K F. NDT of low-velocity impact damages in composite laminates using speckle interferometry[J]. Applied Laser, 2012, 32(6):527-531
    [20] 刘凤超, 冯进良, 王洋, 等. 基于桥梁结构的FBG传感器温度与应变交叉敏感问题的研究[J]. 光学仪器, 2017, 39(1):26-30 LIU F C, FENG J L, WANG Y, et al. Sensitivity of temperature and strain of bridge structure of FBG sensor[J]. Optical Instruments, 2017, 39(1):26-30
    [21] 张宇, 刘雨东, 计钊. 向量相似度测度方法[J]. 声学技术, 2009, 28(4):532-536 ZHANG Y, LIU Y D, JI Z. Vector similarity measurement method[J]. Technical Acoustics, 2009, 28(4):532-536
  • 期刊类型引用(2)

    1. 唐和生,谢雅娟,陈豪. 基于深度学习和近场动力学的层合板冲击工况识别. 计算力学学报. 2023(01): 52-59 . 百度学术
    2. 杨超,谭建平,石理想,薛少华. 矿井提升机罐笼纵向载荷冲击及其方位的辨识研究. 矿山机械. 2018(09): 22-27 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  1454
  • HTML全文浏览量:  5
  • PDF下载量:  1792
  • 被引次数: 11
出版历程
  • 收稿日期:  2017-06-21
  • 修回日期:  2017-09-10
  • 发布日期:  2017-11-05

目录

    /

    返回文章
    返回