高压太阳电池阵静电放电产生脉冲信号的特性研究

Characteristics of electrostatic discharge signal on the high voltage solar array

  • 摘要: 研究高压太阳电池阵静电放电产生脉冲信号的特性,有助于深入了解太阳电池阵充放电形成机制。在试验中,利用电子枪模拟GEO空间带电环境,辐照太阳电池样品表面。利用电流探头CT-2、单极子天线和数字存储示波器测量静电放电所产生的脉冲电流、辐射电场并记录其波形。试验结果表明:太阳电池在静电放电过程中产生了脉冲宽度为几μs的瞬态电流,其峰值幅度为几A;辐射电场的脉冲信号持续时间几百ns至几个μs,其峰值幅度达数百V/m。脉冲信号的时域特征表现为脉冲群,其波形具有陡峭的前沿,能量分布的频率范围主要集中在0.1~50 MHz之间。最后根据上述研究对在轨静电放电测试仪的设计提出建议。

     

    Abstract: This paper studies the characteristics of the time and frequency domains of solar arrays during electrostatic discharge, to improve the understanding as well as the technical support of the charge-discharge mechanism of solar arrays. In the test, the main structure of the solar arrays is isolated from the ground of the vacuum chamber and an electron gun is used to simulate the electrified environmental extremes in the geostationary earth orbit. Specimens are electronically irradiated and charged by the electron gun. The current strength and shape are recorded, as well as the electrical field, by the monopoles, the CT-2 current detector(1 mV/mA) and the TerkDPO4104 digital storage oscilloscope. The electrostatic discharge is initiated by the electrostatic potential of the surface charged solar arrays. A transient current is activated during the discharge and its pulse width reaches 10-6 s. A degraded ring-wave current can be observed and the detected pulse peak reaches several Amperes. The solar array electrostatic discharge field sustains from 10-7 to 10-6 s. The irradiation field strength is 103 V/m and the spectrum ranges up to 102 MHz. A pulse cluster is the characteristics of the solar array time domain, showing a steep-front, with the frequency ranging from 0.1~50 MHz. Suggestions are made accordingly with regard to the property of onboard ESD test instruments.

     

/

返回文章
返回