Numerical simulation of hypersonic vehicle thermal protection with active film cooling
-
摘要: 为研究高超声速飞行器头部全覆盖保护情况下的气动热分布特征,文章提出一种微孔射流的主动气膜热防护方案,并对射流微孔分布进行优化;通过数值求解N-S方程,得到高超声速飞行器头部的驻点压力及表面、附近温度分布。研究结果表明,在主动气膜冷却热防护下,高超声速飞行器壁面温度可以降到1000 K以下。该方案可为未来高超声速飞行器的外壳设计提供参考。Abstract: For studying the thermal distribution on the hypersonic vehicle head in the case of full cover protection, this paper proposes a thermal protection scheme with the active film cooling based on micro jet, and an optimization of the distribution of the film holes. By solving the Navier-Stokes equations, the hypersonic stagnation pressure and the surface temperature distribution of the vehicle front are obtained. It is shown that the temperature at the wall of the hypersonic vehicle could be below 1000 K under the active thermal protection. This scheme provides a new idea for the future hypersonic vehicle design.
-
Keywords:
- hypersonic /
- micro jet /
- film-cooling /
- numerical simulation
-
-
[1] 孙兆虎. 高超声速飞行器结构热问题讨论[J]. 航空科学技术, 2008(3):13-16 SUN Z H. The issues of the aerodynamic heating and thermal protection of hypersonic flight vehicle[J]. Aeronautical Science and Technology, 2008(3):13-16 [2] HARTMANN J, TROLL B. On a new method for the generation of sound waves[J]. Phys Rev, 1922, 20:719-727
[3] BURBANK P B, STALLINGS R L. Heat-transfer and pressure measurements on a flat nose cylinder at a Mach number range of 2.49 to 4.44:NASA TM X-221[R], 1959
[4] ENGBLOM W A, GOLDSTEIN D B. Nose-tip surface heat reduction mechanism[C]//AIAA 34th Aerospace Science Meeting and Exhibit. Reno, 1996
[5] YUCEIL B, DOLLING D S, WILSON D. A preliminary investigation of the Helmholtz resonator concept for heat flux reduction[C]//AIAA 28th Thermo Physics Conference. Orlando, 1993
[6] SILTOND S I, GOLDSTEIN D B. Use of an axial nose-tip cavity for delaying ablation onset in hypersonic flow[J]. J Fluid Mech, 2005, 528:297-321
[7] SARAVANAN S, JAGADEESH G, REDDY K P J. Investigation of missile-shaped body with forward-facing cavity at Mach 8[J]. J Spacecraft Rockets, 2009, 46:557-591
[8] 向树红, 张敏捷, 童靖宇, 等. 高超声速飞行器主动式气膜冷却防热技术研究[J]. 装备环境工程, 2015, 12(3):1-7 XIANG S H, ZHANG M J, TONG J Y, et al. Research on active film cooling and heat-proof scheme for hypersonic vehicles[J]. Equipment Environmental Engineering, 2015, 12(3):1-7 [9] 朱自强. 计算流体力学[M]. 北京:北京航空航天大学出版社, 1998:7-9 [10] 周欣欣, 吴颂平. 高超声速非定常流动的数值模拟与气动热计算[J]. 计算力学学报, 2008, 25(增刊1):23-28 ZHOU X X, WU S P. Numerical simulation of unsteady hypersonic flow and aerodynamic heating calculation[J]. Chinese Journal of Computational Mechanics, 2008, 25(sup 1):23-28 [11] THOMPSON R A. Review of X-33 hypersonic aero dynamic and aero thermodynamic development:NASA 0868[R], 2000
-
期刊类型引用(5)
1. 向树红,商圣飞,沈自才,姜利祥,安亦然. 高超声速气膜冷却技术研究进展及发展方向. 宇航材料工艺. 2020(03): 1-10 . 百度学术
2. 商圣飞,向树红,姜利祥,杨艳静,袁军娅,赵娅. 气膜孔形状对高超声速飞行器对撞流气膜冷却效果的影响. 航天器环境工程. 2020(04): 342-347 . 本站查看
3. 商圣飞,向树红,姜利祥,杨艳静,孙继鹏. 不同孔型对高超声速逆喷流气膜冷却影响. 航空动力学报. 2020(08): 1612-1621 . 百度学术
4. 商圣飞,向树红,杨艳静,姜利祥,安亦然,宋旭东. 高超声速飞行器异型气膜孔无喷流热增量研究. 装备环境工程. 2018(11): 12-16 . 百度学术
5. 郑玲,左益芳,孟繁童,曾鹏云. 高超声速飞行器多物理场耦合及热防护技术研究综述. 装备环境工程. 2018(11): 60-64 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 4246
- HTML全文浏览量: 6
- PDF下载量: 4725
- 被引次数: 13