三结太阳电池高能电子损伤模拟及仿真分析

Simulation of high energy electron damage of triple junction solar cell

  • 摘要: 利用wxAMPS软件构建了高效GaInP/GaAs/Ge太阳电池的中电池模型,并对电池抗辐照性能进行模拟研究。模拟发现,当辐照缺陷密度较小时,缺陷对中电池的电性能影响较小;当缺陷密度较大时,电性能的下降与电子注量值的对数成正比。计算电池的I-V和量子效率谱(QE曲线)可知,电池电性能的下降直接对应于量子效率的下降、饱和暗电流的增强以及并联电阻的衰降。模拟结果与试验结果的对比显示,在各子电池均匀损伤的假定下,1 MeV电子辐照的缺陷引入率约为0.81。

     

    Abstract: In this paper, wxAMPS software is used to build a high-efficiency GaInP/GaAs/Ge solar cell model to study the cell's performance under the electron irradiation. The model is based on the QE data. High-energy particles cause the displacement damage in the solar cells, which is simulated by changing the material parameters. By simulations, the degradation behavior of the solar cells can be determined. The electrical properties of the battery change little under low defect density. However, when the defect density is relatively large, the decrease of the electrical parameters is observed to be proportional to the logarithm of the fluence of 1 MeV electrons. The I-V and QE curves are calculated by wxAMPS. The degradation of the electrical properties, the decrease of the QE, the growth of the reverse saturation current and the increase of the shunt resistance are closely related to each other. Combined with the simulation and the experiment results, the introduced rate of defects for the 1MeV electrons is shown to be about 0.81 when the degradation behavior of each sub cell is supposed to be the same.

     

/

返回文章
返回